This paper presents the review of design variables optimization and control strategies of a Linear Switched Reluctance Actuator (LSRA). The introduction of various type of linear electromagnetic actuators (LEA) are compared and the advantages of LSRA over other LEA are discussed together with the type of actuator configurations and topologies. The SRA provides an overall efficiency similar to induction actuator of the similar rating, subsequently the friction and windage losses are comparable but force density is better. LSRA has the advantage of low cost, simple construction and high reliability compare to the actuator with permanent magnet. However, LSRA also has some obvious defects which will influence the performance of the actuator such as ripples and acoustic noise which are caused by the highly nonlinear characteristics of the actuator. By researching the design variables of the actuator, the influences of those design variables are introduced and the detail comparisons are analyzed in this paper. In addition, this paper also reviews on the control strategies in order to overcome the weaknesses of LSRA. Keyword:Actuator INTRODUCTIONLinear electromagnetic actuators (LEA) is a mechanism that generate linear motion due to the interactions of the magnetic fields and electromagnetic thrust. The major advantage of electromagnetic actuators over the conventional actuators is that it is almost maintenance free which is due to the absence of mechanical part such as gears The typical design of LEA can be characterized as three topologies: (i) Planar Single Sided; (ii) Planar Double Sided; (iii) Tubular. By comparison, the tubular topology of LEA has greater force density compare to planer topology actuator due to lesser flux leakage and tubular topology actuator minimized the stray magnetic field in the direction of travel along the stator and mover part [5]. Hence, the thrust force and
Linear electromagnetic actuator is receiving significant attention due to recent advances in power electronics and modern control methods. This research proposes a three-phase tubular linear switched reluctance actuator (LSRA) for application in the semiconductor fabrication industry. The tubular LSRA has a robust construction, low manufacturing and maintenance cost, good fault tolerance capability, and high reliability in a harsh environment, making it an attractive alternative to a permanent magnet linear actuator. However, the tubular LSRA has a long mover, which increases the possibility of the mover deforming during fabrication. So, a new mover design is proposed to overcome the problem. The proposed mover design allows the traveling distance of the actuator to be modified by adding or removing the rings without changing the shaft. The tubular LSRA prototype is fabricated according to the optimized design. To drive the tubular LSRA, a appropriate switching algorithm method are used to provide the correct switching signal. This method is straightforward, while no extensive knowledge of power electronic converter is required. The developed tubular LSRA can generate a maximum static force of 0.65N. Through the open-loop reciprocating motion, the dynamic responses of the tubular LSRA can achieve a maximum velocity of 210mm/s and maximum acceleration of 8m/s2, which are in the performance range for precision mechanism.
Hazardous environments such as in industry sector with high chemical usage give high risks to the safety of workers. These risks can be reduced by designing robotic hand that is able to replace human works. For the industry purpose, the robotic hand needs to have a higher performance in accuracy, stability and consistency. However, the current robotic hand in industry is not flexible, which means it cannot be used for different tasks. Therefore, a multi-purpose robotic hand was developed. In this paper, the objectives of this research are to design and develop a PID controller for improving the performances of a robotic hand system. The experimental results prove that the PID controller shows good performances with the steady state error less than 0.110 for the input reference, 300 respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.