Increasing evidence has demonstrated that increased expression of cyclin-dependent kinase regulatory subunit 1B (CKS1B) is associated with the pathogenesis of many human cancers, including colorectal cancer (CRC). However, the regulatory mechanisms underlying the expression of CKS1B in CRC are not completely understood. Here, we investigate the role played by microRNAs in the expression of CKS1B and carcinogenesis in CRC. Among the six microRNAs predicted to target CKS1B gene expression, only miR-1258 was revealed to downregulate CKS1B expression through binding to its 3’-UTR region, as ectopic miR-1258 expression suppressed CKS1B expression and vice versa. In CRC, miR-1258 expression also decreased cell proliferation and migration in vitro and tumor growth in vivo, similar to cells with silenced CKS1B expression. Considering the highly increased levels of CKS1B and decreased expression of miR-1258 in tumors from CRC patients, these findings suggest that miR-1258 may play tumor-suppressive roles by targeting CKS1B expression in CRC. However, the therapeutic significance of these findings should be evaluated in clinical settings.
Endothelin receptor A (EDNRA) has been reported to play various crucial physiological roles and has been shown to be associated with the pathology of several diseases, including colorectal cancer (CRC). However, the molecular mechanisms of EDNRA in the development of human CRC have not been fully elucidated to date. In this context, the present study was performed to investigate biological functions and novel downstream signaling pathways affected by EDNRA, during CRC progression. First, using public data repositories, it was observed that the EDRNA expression levels were markedly increased in CRC tissues, as compared to normal tissues. Patients with CRC with an increased EDNRA expression exhibited a significantly decreased survival rate in comparison with those with a lower EDNRA expression. Furthermore, a positive correlation between the levels of EDNRA and its ligand, EDN1, was found in CRC tissues. The ectopic expression of EDNRA or its ligand, EDN1, promoted, whereas the silencing of EDNRA or EDN1 decreased cell proliferation and migration in vitro. To elucidate the signaling pathways involved in the regulation of EDNRA expression in CRC cells, a phosphokinase array analysis was performed, and it was observed that the knockdown of EDNRA substantially suppressed the phosphorylation of signal transducer and activator of transcription 3 (STAT3) in CRC cells. Of note, STAT3 silencing simultaneously decreased EDN1 and EDNRA expression, with the expression of EDN1 and/or EDNRA appearing to be directly regulated by binding STAT3 to their promoter region, according to chromatin immunoprecipitation and promoter assays, ultimately indicating a positive feedback loop in the expression of EDNRA and EDN1. It was also observed that treatment with an EDNRA antagonist (macitentan), alone or in combination with cisplatin, suppressed cell growth and migration ability, and induced cell apoptosis. Collectively, these data suggest a critical role of the EDN1/EDNRA signaling pathway in CRC progression. Thus, the pharmacological intervention of this signaling pathway may prove to be a potential therapeutic approach for patients with CRC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.