In this study properties of diffuse light from a spherical media embedded in an infinite media was investigated. Light that migrates through the spherical media is considered as signal and light that does not propagate through the spherical media is considered as noise. The analytical solution of SNR (signal to noise ratio) was derived with diffusion theory. The spatial distributions of the fluence rate were analyzed and the contours of signal to noise ratio were obtained as light source was put in different positions. The relationship between the source detector separation corresponding to maximum SNR and light source position was discussed, which is helpful to determine an appropriate measurement position. The results acquired in this paper are useful for ultrasound-modulated optical tomography and tissue imaging with diffuse photon density waves.
Abstract:A study was carried out to evaluate abrasion of shoe-sole for subjects with different running gait. A 3 dimensional (3D) scanning approach together with a commercial software, CloudCompare Mesh Cloud Comparison was utilized for this study. In CloudCompare, a grid system and colored scale was applied to identify the region and extend of abrasion of the shoe-sole. This study clearly showed the extent of abrasion on regions of shoe-sole identified from the colored scale.
Wear identification and projection have eluded shoe manufacturers due to the myriad of factors that affect the abrasion wear of shoes. Using a gridded three-dimensional cloud comparison in CloudCompare software, abrasion wear thickness of shoes was identified using the CIE-L-a-b colour system that is interpolated with the physical formula representation of colours. After obtaining the thickness lost, other wear factors like the material properties of the shoe sole, the runners’ personal profile and the running schedule were combined for wear projection. The methodological process from a non-destructive wear detection to wear projection allows shoe manufacturers to reduce the iterations of wear testing while maximizing the entire analysis of shoe wear. Shoe samples were kindly sponsored by ASICS Institute of Sport Science.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.