Salivary glands that produce and secrete saliva, which is essential for lubrication, digestion, immunity, and oral homeostasis, consist of diverse cells. The long-term maintenance of diverse salivary gland cells in organoids remains problematic. Here, we establish long-term murine and human salivary gland organoid cultures. Murine and human salivary gland organoids express gland-specific genes and proteins of acinar, myoepithelial, and duct cells, and exhibit gland functions when stimulated with neurotransmitters. Furthermore, human salivary gland organoids are established from isolated basal or luminal cells, retaining their characteristics. Single-cell RNA sequencing also indicates that human salivary gland organoids contain heterogeneous cell types and replicate glandular diversity. Our protocol also enables the generation of tumoroid cultures from benign and malignant salivary gland tumor types, in which tumor-specific gene signatures are well-conserved. In this study, we provide an experimental platform for the exploration of precision medicine in the era of tissue regeneration and anticancer treatment.
Lumen formation of salivary glands has been investigated using in vivo or ex vivo rudiment culture models. In this study, we used a three-dimensional (3D) salivary gland organoid culture system and demonstrated that lumen formation could be recapitulated in mouse SMG organoids. In our organoid culture system, lumen formation was induced by vasoactive intestinal peptide and accelerated by treatment with RA. Furthermore, lumen formation was observed in branching duct-like structure when cultured in combination of fibroblast growth factors (FGF) in the presence of retinoic acid (RA). We suggest RA signaling-mediated regulation of VIPR1 and KRT7 as the underlying mechanism for lumen formation, rather than apoptosis in the organoid culture system. Collectively, our results support a fundamental role for RA in lumen formation and demonstrate the feasibility of 3D organoid culture as a tool for studying salivary gland morphogenesis.
A recent study reveals that missense mutations of EWSR1 are associated with neurodegenerative disorders such as amyotrophic lateral sclerosis, but the function of wild-type (WT) EWSR1 in the central nervous system (CNS) is not known yet. Herein, we investigated the neuroanatomical and motor function changes in Ewsr1 knock out (KO) mice. First, we quantified neuronal nucleus size in the motor cortex, dorsal striatum and hippocampus of three different groups: WT, heterozygous Ewsr1 KO (+/−), and homozygous Ewsr1 KO (−/−) mice. The neuronal nucleus size was significantly smaller in the motor cortex and striatum of homozygous Ewsr1 KO (−/−) mice than that of WT. In addition, in the hippocampus, the neuronal nucleus size was significantly smaller in both heterozygous Ewsr1 KO (+/−) and homozygous Ewsr1 KO (−/−) mice. We then assessed motor function of Ewsr1 KO (−/−) and WT mice by a tail suspension test. Both forelimb and hindlimb movements were significantly increased in Ewsr1 KO (−/−) mice. Lastly, we performed immunohistochemistry to examine the expression of TH, DARPP-32, and phosphorylated (p)-DARPP-32 (Thr75) in the striatum and substantia nigra, which are associated with dopaminergic signaling. The immunoreactivity of TH and DARPP-32 was decreased in Ewsr1 KO (−/−) mice. Together, our results suggest that EWSR1 plays a significant role in neuronal morphology, dopaminergic signaling pathways, and motor function in the CNS of mice.
Salivary gland hypofunction after irradiation is associated with a deficit of epithelial stem/progenitors in salivary glands. Although epidermal growth factor (EGF) is known to stimulate the proliferation of epithelial cells, the therapeutic effect of EGF on salivary epithelial stem/progenitors remains undetermined. In this study, we administered EGF to submandibular glands (SMGs) via a retrograde route through the SMG excretory duct before fractionated irradiation and examined whether EGF could protect salivary epithelial progenitor cells from radiation and alleviate radiation-induced salivary hypofunction. EGF-treated mice exhibited greater body and gland weights at 12 wk after irradiation than untreated mice. The retroductal delivery of EGF improved salivary secretory function and increased salivary amylase activity in a dose-dependent manner. Histological examinations highlighted the amelioration of the loss of keratine-14+ (KRT14+) basal ductal and/or MIST1+ acinar cells, as well as induction of fibrosis, following irradiation in EGF-treated mice. An additional in vitro experiment using a salivary gland organoid irradiation model indicated that the radioprotective effects of EGF promoted the growth and inhibited the apoptotic cell death of salivary epithelial cells. Our results suggest that retroductal delivery of EGF may be a promising therapeutic option for preventing radiation-induced salivary gland hypofunction.
The potential genotoxic effect of a time-varying magnetic field (MF) on human cells was investigated. Upon continuous exposure of human primary fibroblast and cervical cancer cells to a 60 Hz MF at 7 mT for 10-60 min, no significant change in cell viability was observed. However, deoxyribonucleic acid (DNA) double-strand breaks (DSBs) were detected, and the DNA damage checkpoint pathway was activated in these cells without programmed cell death (called apoptosis). The exposure of human cells to a 60 Hz MF did not induce intracellular reactive oxygen species (ROS) production, suggesting that the observed DNA DSBs are not directly caused by ROS. We also compared the position and time dependency of DNA DSBs with numerical simulation of MFs. The Lorentz force and eddy currents in these experiments were numerically calculated to investigate the influence of each factor on DNA DSBs. The DNA DSBs mainly occurred at the central region, where the MF was strongest, after a 30-min exposure. After 90 min, however, the amount of DNA DSBs increased rapidly in the outer regions, where the eddy current and Lorentz force were strong.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.