Aberrant EGFR signaling strongly promotes glioma malignancy and treatment resistance. The most prevalent mutation, ΔEGFR/EGFRvIII, is an in-frame deletion of the extracellular domain, which occurs in more than 25% of glioblastomas and enhances growth and survival of tumor cells. Paradoxically, the signaling of the potent oncogene ΔEGFR is of low intensity, raising the question of whether it exhibits preferential signaling to key downstream targets. We have observed levels of phosphorylation of STAT5 at position Y699 in cells expressing ΔEGFR that are similar or higher than in cells that overexpress EGFR and are acutely stimulated with EGF, prompting us to investigate the role of STAT5 activation in glioblastoma. Here, we show that in human glioblastoma samples, pSTAT5 levels correlated positively with EGFR expression and were associated with reduced survival. Interestingly, the activation of STAT5b downstream of ΔEGFR was dependent on SFKs, while the signal from acutely EGF-stimulated EGFR to STAT5b involved other kinases. Phosphorylated STAT5b and ΔEGFR associated in the nucleus, bound DNA and were found on promoters known to be regulated by STAT5 including that of the Aurora A gene. ΔEGFR cooperated with STAT5b to regulate the Bcl-XL promoter and knockdown of STAT5b suppressed anchorage independent growth, reduced the levels of Bcl-XL and sensitized glioblastoma cells to cisplatin. Together these results delineate a novel association of nuclear ΔEGFR with STAT5b, which promotes oncogenesis and treatment resistance in glioblastoma by direct regulation of anti-apoptotic gene, Bcl-XL.
An in-frame deletion mutation in Epidermal Growth Receptor (EGFR), ΔEGFR is a common and potent oncogene in glioblastoma (GBM), promoting growth and survival of cancer cells. This mutated receptor is ligand independent and constitutively active. Its activity is low in intensity and thought to be qualitatively different from acutely ligand stimulated wild type receptor implying that the preferred downstream targets of ΔEGFR play a significant role in malignancy. To understand the ΔEGFR signal we compared it to that of a kinase-inactivated mutant of ΔEGFR and wild-type EGFR with shotgun phosphoproteomics using an electron-transfer dissociation (ETD) enabled ion trap mass spectrometer. We identified and quantified 354 phosphopeptides corresponding to 249 proteins. Among the ΔEGFR-associated phosphorylations were the previously described Gab1, c-Met and Mig-6, and also novel phosphorylations including that of STAT5 on Y694/9. We have confirmed the most prominent phosphorylation events in cultured cells and in murine xenograft models of glioblastoma. Pathway analysis of these proteins suggests a preference for an alternative signal transduction pathway by ΔEGFR compared to wild type EGFR. This understanding will potentially benefit the search for new therapeutic targets for ΔEGFR expressing tumors.
ΔEGFR, an in-frame deletion mutant of the extracellular ligand-binding domain, which occurs in about 30% of glioblastoma, is a potent oncogene that promotes tumor growth and progression. The signaling of ΔEGFR is ligand-independent and low intensity, allowing it to evade the normal mechanisms of internalization and degradation by the endocytic machinery, and hence is persistent. The basis of the oncogenic potential of ΔEGFR remains incompletely understood, including whether dimerization plays an important role in its signal and whether its oncogenic potential is dependent on its relatively low intensity, when compared to the acutely activated wild-type receptor. To examine these two important questions we have generated a chimeric ΔEGFR that allows forced dimerization via domains derived from variants of the FKBP12 protein that are brought together by FK506-derivatives. Forced dimerization of chimeric ΔEGFR significantly increased the intensity of its signal, as measured by receptor phosphorylation levels, suggesting that the naturally occurring ΔEGFR does not form strong or stable dimers as part of its low level signal. Interestingly the increased activity of dimerized, chimeric ΔEGFR did not promote receptor internalization, implying that ΔEGFR’s reduced rate of endocytic downregulation is an inherent characteristic. Significantly, forced dimerization enhanced the oncogenic signal of the receptor, implying that the ΔEGFR is a potent oncogene despite, not because of its low intensity.
Background: Expression of ⌬EGFR, a mutant of EGFR in gliomas, correlates with poor prognosis. Results: Access to the nucleus is required for full oncogenicity of ⌬EGFR, and nuclear ⌬EGFR regulates transcription of target genes via c-Myc. Conclusion: Functional association of nuclear ⌬EGFR with c-Myc is necessary for ⌬EGFR-induced oncogenicity. Significance: These data show a novel activity of ⌬EGFR and offer new opportunities for therapeutic intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.