A controversial issue of the driving force for the phase transition of the one-dimensional (1D) metallic In wires on Si(111) is studied by low-temperature scanning tunneling microscopy and spectroscopy. The energy gap opening and the longitudinal charge ordering through charge transfer at the Fermi level are unambiguously observed. The vacancy defects induce a local charge ordering decoupled from a lattice distortion above T(c), and pin the phase of charge order below T(c). All these results below and above T(c) including the detailed features such as local fluctuations strongly support the 1D charge-density-wave mechanism for the phase transition.
The initial oxygen adsorption on the Si(111)7 x 7 surface was investigated by high-resolution x-ray absorption spectroscopy. Below 220 K, a molecular adsorption species is identified by distinctive absorption resonances due to the 1 pi(g) molecular orbitals. The molecular species is metastabilized to have a lifetime of 15-35 min at 135 K only with the presence of atomic adsorbates of more than 0. 1 ML (monolayer). It is thus clearly evidenced that the very initial adsorption is dissociative even at 100 K and the molecular species is not a precursor state. The molecular adsorption structures with the coadsorbed oxygen atoms are suggested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.