Recombinant Chinese hamster ovary cells (rCHO) cells have been the most commonly used mammalian host for large-scale commercial production of therapeutic proteins. Recent advances in cell culture technology for rCHO cells have achieved significant improvement in protein production leading to titer of more than 10 g/L to meet the huge demand from market needs. This achievement is associated with progression in the establishment of high and stable producer and the optimization of culture process including media development. In this review article, we focus on current strategies and achievements in cell line development, mainly in vector engineering and cell engineering, for high and stable protein production in rCHO cells. The approaches that manipulate various DNA elements for gene targeting by site-specific integration and cis-acting elements to augment and stabilize gene expression are reviewed here. The genetic modulation strategy by "direct" cell engineering with growth-promoting and/or productivity-enhancing factors and omics-based approaches involved in transcriptomics, proteomics, and metabolomics to pursue cell engineering are also presented.
Recombinant glycoprotein therapeutics have proven to be invaluable pharmaceuticals for the treatment of various diseases. Chinese hamster ovary (CHO) cells are widely used in industry for the production of these proteins. Several strategies for engineering CHO cells for improved protein production have been tried with considerable results. The focus has mainly been to increase the specific productivity and to extend the culture longevity by preventing programmed cell death. These CHO cell engineering strategies, particularly those developed in Korea, are reviewed here.
During recombinant Chinese hamster ovary (rCHO) cell culture, various events, such as feeding with concentrated nutrient solutions or the addition of base to maintain an optimal pH, increase the osmolality of the medium. To determine the effect of hyperosmotic stress on two types of programmed cell death (PCD), apoptosis and autophagy, of rCHO cells, two rCHO cell lines, producing antibody and erythropoietin, were subjected to hyperosmotic stress resulting from NaCl addition (310-610 mOsm/kg). For both rCHO cell lines, hyperosmolality up to 610 mOsm/kg increased cleaved forms of PARP, caspase-3, caspase-7, and fragmentation of chromosomal DNA, confirming the previous observation that apoptosis was induced by hyperosmotic stress. Concurrently, hyperosmolality increased the level of accumulation of LC3-II, a widely used autophagic marker, which was determined by Western blot analysis and confocal microscopy. When glucose and glutamine concentrations were measured during the cultures, glucose and glutamine concentrations in the culture medium at various osmolalities (310-610 mOsm/kg) showed no significant differences. This result suggests that induction of PCD by hyperosmotic stress occurred independently of nutrient depletion. Taken together, autophagy as well as apoptosis was observed in rCHO cells subjected to hyperosmolality.
Upon nutrient deprivation during culture, recombinant Chinese hamster ovary (rCHO) cells are subjected to two types of programmed cell death (PCD), apoptosis and autophagy. To investigate the effect of Bcl-x(L) overexpression on apoptosis and autophagy in rCHO cells, an erythropoietin (EPO)-producing rCHO cell line with regulated Bcl-x(L) overexpression (EPO-off-Bcl-x(L)) was established using the Tet-off system. The expression level of Bcl-x(L) in EPO-off-Bcl-x(L) cells was tightly regulated by doxycycline in a dose-dependent manner. Bcl-x(L) overexpression enhanced cell viability and extended culture longevity in batch culture. Upon nutrient depletion in the later stage of batch culture, Bcl-x(L) overexpression suppressed apoptosis by inhibiting the activation of caspase-3 and -7. Simultaneously, Bcl-x(L) overexpression also delayed autophagy, characterized by LC3-II accumulation. Immunoprecipitation analysis with a Flag-tagged Bcl-x(L) revealed that Bcl-x(L) interacts with Bax and Bak, essential mediators of caspase-dependent apoptosis, as well as with Beclin-1, an essential mediator of autophagy, and may inhibit their pro-cell death function. Taken together, it was found that Bcl-x(L) overexpression inhibits both apoptosis and autophagy in rCHO cell culture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.