Sensitive nanowires: ZnO nanowire arrays are fabricated by nanoscale spacer lithography, a top‐down paradigm consisting of photolithography, ZnO atomic‐layer deposition, and low‐damage dry etching. ZnO nanowire devices based on this technique (see picture) show good electrical transport and gas‐sensing properties to various concentrations of H2 and CO.
As interest has increased in the interaction between low-temperature plasmas and living cells or organic materials, the role of modelling and simulation of atmospheric pressure plasmas has become important in understanding the effects of charged particles and radicals in biomedical applications. This review paper introduces the general properties of low-temperature atmospheric pressure plasma devices for biomedical applications and explains recently reported simulation results. Control parameters of atmospheric pressure plasmas, such as gas mixture composition, driving frequency and voltage and the function shape of sinusoidal and pulsed power, are considered through both a review of previous findings and new simulation results in order to improve plasma properties for given purposes. Furthermore, the simulation or modelling techniques are explained along with surface interactions of the plasma for the future development of simulation codes to study the interaction of plasmas with living cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.