Recently, with the normalization of non-face-to-face online environments in response to the COVID-19 pandemic, the possibility of cyberattacks through endpoints has increased. Numerous endpoint devices are managed meticulously to prevent cyberattacks and ensure timely responses to potential security threats. In particular, because telecommuting, telemedicine, and teleeducation are implemented in uncontrolled environments, attackers typically target vulnerable endpoints to acquire administrator rights or steal authentication information, and reports of endpoint attacks have been increasing considerably. Advanced persistent threats (APTs) using various novel variant malicious codes are a form of a sophisticated attack. However, conventional commercial antivirus and anti-malware systems that use signature-based attack detection methods cannot satisfactorily respond to such attacks. In this paper, we propose a method that expands the detection coverage in APT attack environments. In this model, an open-source threat detector and log collector are used synergistically to improve threat detection performance. Extending the scope of attack log collection through interworking between highly accessible open-source tools can efficiently increase the detection coverage of tactics and techniques used to deal with APT attacks, as defined by MITRE Adversarial Tactics, Techniques, and Common Knowledge (ATT&CK). We implemented an attack environment using an APT attack scenario emulator called Carbanak and analyzed the detection coverage of Google Rapid Response (GRR), an open-source threat detection tool, and Graylog, an open-source log collector. The proposed method expanded the detection coverage against MITRE ATT&CK by approximately 11% compared with that conventional methods.
Video platforms, including YouTube, have a structure in which the number of video views is directly related to the publisher's profits. Therefore, video publishers induce viewers by using provocative titles and thumbnails to garner more views. The conventional technique used to limit such harmful videos has low detection accuracy and relies on follow-up measures based on user reports. To address these problems, this study proposes a technique to improve the accuracy of filtering harmful media using thumbnails, titles, and audio data from videos. This study analyzed these three pieces of multimodal information; if the number of harmful determinations was greater than the set threshold, the video was deemed to be harmful, and its upload was restricted. The experimental results showed that the proposed multimodal information extraction technique used for harmfulvideo filtering achieved a 9% better performance than YouTube's Restricted Mode with regard to detection accuracy and a 41% better performance than the YouTube automation system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.