We fabricated nanopillar light-emitting diodes (LEDs) embedded with Ag/SiO2 nanoparticles, and investigated the energy coupling processes between the localized surface plasmons of nanoparticles and the active quantum well regions of nanopillar LEDs. These nanoparticle-embedded nanopillar LEDs showed considerable increases in photoluminescence and electroluminescence intensities, compared with reference nanopillar LEDs. The observed optical enhancement was explained by the increased spontaneous emission rate caused by energy coupling from excitons in the InGaN/GaN quantum well active region of the LEDs to the localized surface plasmon modes of the Ag/SiO2 nanoparticles. A strongly enhanced characteristic photoluminescence decay also confirmed such an explanation.
Recently, various intelligent technological innovations are being applied to smart factories. As manipulators are widely used in smart factories, the manipulator and the workspace of humans overlap, and interest in cooperative robots and human safety has increased. In relation to this, a collision-avoidance control algorithm applicable in three dimensions (3D) and that also meets existing safety standards for humans and robots is required. In this paper, we propose a 3D potential field-based manipulator collision avoidance algorithm that meets the requirements of the ISO 15066 standard. This algorithm applies Speed and Separation Monitoring(SSM) according to the distance between the manipulator and the obstacle and controls the speed of the manipulator slowly as the risk is higher. This allows us to overcome the limitations that existing studies have not been conducted on 3D potential field-based obstacle avoidance and that it is difficult to apply to the field without considering ISO 15066. The proposed system was verified through simulation and experiments, and through comparison with the existing algorithm, we verified that SSM was well applied to the proposed system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.