The ubiquitin/proteasome system has been proposed to play an important role in Alzheimer's disease (AD) pathogenesis. However, the critical factor(s) modulating both amyloid-beta peptide (Abeta) neurotoxicity and ubiquitin/proteasome system in AD are not known. We report the isolation of an unusual ubiquitin-conjugating enzyme, E2-25K/Hip-2, as a mediator of Abeta toxicity. The expression of E2-25K/Hip-2 was upregulated in the neurons exposed to Abeta(1-42) in vivo and in culture. Enzymatic activity of E2-25K/Hip-2 was required for both Abeta(1-42) neurotoxicity and inhibition of proteasome activity. E2-25K/Hip-2 functioned upstream of apoptosis signal-regulating kinase 1 (ASK1) and c-Jun N-terminal kinase (JNK) in Abeta(1-42) toxicity. Further, the ubiquitin mutant, UBB+1, a potent inhibitor of the proteasome which is found in Alzheimer's brains, was colocalized and functionally interacted with E2-25K/Hip-2 in mediating neurotoxicity. These results suggest that E2-25K/Hip-2 is a crucial factor in regulating Abeta neurotoxicity and could play a role in the pathogenesis of Alzheimer's disease.
Cain͞cabin1 is an endogenous inhibitor of calcineurin (Cn), a calcium-dependent serine͞threonine phosphatase involved in various cellular functions including apoptosis. We show here that during apoptosis cain͞cabin1 is cleaved by calpain at the carboxyl terminus to generate a cleavage product with a molecular mass of 32 kDa as a necessary step leading to Cn-mediated cell death.
We describe the isolation and characterization of a new apaf-1-interacting protein (APIP) as a negative regulator of ischemic injury. APIP is highly expressed in skeletal muscle and heart and binds to the CARD of Apaf-1 in competition with caspase-9. Exogenous APIP inhibits cytochrome c-induced activation of caspase-3 and caspase-9, and suppresses cell death triggered by mitochondrial apoptotic stimuli through inhibiting the downstream activity of cytochrome c released from mitochondria. Conversely, reduction of APIP expression potentiates mitochondrial apoptosis. APIP expression is highly induced in mouse muscle affected by ischemia produced by interruption of the artery in the hindlimb and in C2C12 myotubes created by hypoxia in vitro, and the blockade of APIP up-regulation results in TUNELpositive ischemic damage. Furthermore, forced expression of APIP suppresses ischemia/hypoxia-induced death of skeletal muscle cells. Taken together, these results suggest that APIP functions to inhibit muscle ischemic damage by binding to Apaf-1 in the Apaf-1/ caspase-9 apoptosis pathway.
Apoptosis repressor with CARD (ARC) possesses the ability not only to block activation of caspase 8 but to modulate caspase-independent mitochondrial events associated with cell death. However, it is not known how ARC modulates both caspase-dependent and caspase-independent cell death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.