The multifunctional cytokine p43 acts on endothelial and immune cells to control angiogenesis and inflammation. In this report, we describe an additional activity of p43 that specifically promotes fibroblast proliferation and wound repair. In skin wound regions from mice, tumor necrosis factor-␣ induced p43 expression and secretion from macrophages recruited to the site. p43 also promoted fibroblast proliferation through its 146-amino acid N-terminal domain as revealed by deletion mapping. This p43-induced fibroblast proliferation was mediated by extracellular signal-regulated kinase (Erk). Depletion of endogenous p43 in mice by gene disruption retarded wound repair, whereas exogenous supplementation of recombinant human p43 to the wound area stimulated dermal fibroblast proliferation, collagen production, and wound closure. Thus, we have identified a novel p43 activity involving the stimulation of fibroblast proliferation, which could be applied therapeutically to aid wound repair. (Am J Pathol 2005, 166:387-398)
JX-594 is a targeted and granulocyte macrophage-colony stimulating factor (GM-CSF)-expressing oncolytic poxvirus designed to selectively replicate in and destroy cancer cells through viral oncolysis and tumor-specific immunity. In order to study the mechanisms-of-action (MOA) of JX-594 in humans, a mechanistic proof-of-concept clinical trial was performed at a low dose equivalent to ≤10% of the maximum-tolerated dose (MTD) in other clinical trials. Ten patients with previously treated stage IV melanoma were enrolled. Tumors were injected weekly for up to nine total treatments. Blood samples and tumor biopsies were analyzed for evidence of transgene activity, virus replication, and immune stimulation. The β-galactosidase (β-gal) transgene was expressed in all patients as evidenced by antibody induction. Six patients had significant induction of GM-CSF-responsive white blood cell (WBC) subsets such as neutrophils (25-300% increase). JX-594 replication and subsequent shedding into blood was detectable in five patients after cycles 1-9. Tumor biopsies demonstrated JX-594 replication, perivascular lymphocytic infiltration, and diffuse tumor necrosis. Mild flu-like symptoms were the most common adverse events. In sum, JX-594 replication, oncolysis, and expression of both transgenes were demonstrated; replication was still evident after multiple cycles. These findings have implications for further clinical development of JX-594 and other transgene-armed oncolytic viruses.
Ascorbic acid has been reported to enhance differentiation of embryonic stem (ES) cells into neurons, however, the specific functions of ascorbic acid have not been defined yet. To address this issue, gene expression profiling was performed using cDNA microarray. Ascorbic acid increased the expressions of genes involved in neurogenesis, maturation, and neurotransmission. Furthermore, statistical analysis using Fisher's exact test revealed ascorbic acid significantly modulated the genes involved in cell adhesion and development category. These results provide information on the role for ascorbic acid during neuronal differentiation of ES cells and might contribute to large-scale generation of neurons for future clinical treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.