a b s t r a c tAll around the world research is being conducted in the field of renewable energy due to the depletion of fossil fuels and the problem of global warming. Fast pyrolysis, an optimal technology for converting biomass to liquid fuel, enables lignocellulosic raw materials such as wood, switch grass and rice straw to be converted to biocrude-oil. Even though many studies on these materials have already been conducted, the high production costs and unstable supply thereof have frequently been pointed out as significant problems. Thus, this study considers the use of another feedstock to solve such disadvantages and to raise the recycling rate of organic wastes simultaneously. Swine manure was selected as an alternative feedstock due to the existence of a stable supply from the livestock farming industry. A bubblingfluidized-bed reactor was used in the present study for fast pyrolysis. The yield and characteristics of biocrude-oil were investigated at various reaction temperatures. The optimum temperature for maximum biocruce-oil yield was found to be 600 C with the highest yield of 18.48 wt% and HHV of 13.59 MJ/kg. Due to its low yield and high water content, swine manure is suggested to be blended with other types of biomass as a means of higher yield and quality of biocrude-oil.
a b s t r a c tA burner system with capacity of 30,000 kcal/h was designed for the combustion of biocrude-oil and ethanol blends. An air atomizing spray nozzle with larger fuel orifice was adopted to prevent nozzle clogging, with swirl flow introduced to the combustion air for flame stabilization. Biocrude-oil was prepared from the fast pyrolysis of woody biomass and was blended with ethanol to improve flame stability and ignition characteristics. At various mixing ratios of biocrude-oil and ethanol, flame stability was determined, and gaseous emissions of CO and NO were measured. It was found that stable combustion could be achieved with up to 90 vol% of biocrude-oil. CO emissions of biocrude-oil/ethanol blends were smaller than those of pure ethanol, whereas CO concentration increased significantly in case of pure biocrude-oil due to incomplete combustion. Pollutant NO emission increased slightly with the biocrude-oil mixing ratio. The biocrude-oil burner in this study could provide a design database for industrial burner development.
a b s t r a c tA tilted-slide fast pyrolyzer was designed for the large-scale production of biocrude-oil. Woody biomass (Douglas fir) was fed into the reactor under different experimental conditions, including reaction temperature and biomass feeding rate, in order to study the biocrude-oil yield and its characteristics. One spray type condenser was used to condense the biocrude-oil by direct contact heat transfer and three shell and tube type condensers were used to collect biocrude-oil by indirect contact heat transfer. The highest biocrude-oil yield (61.9 wt.%) was obtained at 490 C and a feeding rate of 12.5 kg/h, with most biocrude-oil was collected in the spray type condenser. The characteristics of the biocrude-oils obtained from each condenser were scrutinized and compared, and GC/MS analysis was also conducted to ascertain the chemical components of the biocrude-oil thus obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.