BackgroundTraumatic brain injury (TBI) induces primary and secondary damage in both the endothelium and the brain parenchyma, collectively termed the neurovascular unit. While neurons die quickly by necrosis, a vicious cycle of secondary injury in endothelial cells exacerbates the initial injury in the neurovascular unit following TBI. In activated endothelial cells, excessive superoxide reacts with nitric oxide (NO) to form peroxynitrite. Peroxynitrite has been implicated in blood brain barrier (BBB) leakage, altered metabolic function, and neurobehavioral impairment. S-nitrosoglutathione (GSNO), a nitrosylation-based signaling molecule, was reported not only to reduce brain levels of peroxynitrite and oxidative metabolites but also to improve neurological function in TBI, stroke, and spinal cord injury. Therefore, we investigated whether GSNO promotes the neurorepair process by reducing the levels of peroxynitrite and the degree of oxidative injury.MethodsTBI was induced by controlled cortical impact (CCI) in adult male rats. GSNO or 3-Morpholino-sydnonimine (SIN-1) (50 μg/kg body weight) was administered orally two hours following CCI. The same dose was repeated daily until endpoints. GSNO-treated (GSNO group) or SIN-1-treated (SIN-1 group) injured animals were compared with vehicle-treated injured animals (TBI group) and vehicle-treated sham-operated animals (Sham group) in terms of peroxynitrite, NO, glutathione (GSH), lipid peroxidation, blood brain barrier (BBB) leakage, edema, inflammation, tissue structure, axon/myelin integrity, and neurotrophic factors.ResultsSIN-1 treatment of TBI increased whereas GSNO treatment decreased peroxynitrite, lipid peroxides/aldehydes, BBB leakage, inflammation and edema in a short-term treatment (4-48 hours). GSNO also reduced brain infarctions and enhanced the levels of NO and GSH. In a long-term treatment (14 days), GSNO protected axonal integrity, maintained myelin levels, promoted synaptic plasticity, and enhanced the expression of neurotrophic factors.ConclusionOur findings indicate the participation of peroxynitrite in the pathobiology of TBI. GSNO treatment of TBI not only reduces peroxynitrite but also protects the integrity of the neurovascular unit, indicating that GSNO blunts the deleterious effects of peroxynitrite. A long-term treatment of TBI with the same low dose of GSNO promotes synaptic plasticity and enhances the expression of neurotrophic factors. These results support that GSNO reduces the levels of oxidative metabolites, protects the neurovascular unit, and promotes neurorepair mechanisms in TBI.
SMS [SM (sphingomyelin) synthase] is a class of enzymes that produces SM by transferring a phosphocholine moiety on to ceramide. PC (phosphatidylcholine) is believed to be the phosphocholine donor of the reaction with consequent production of DAG (diacylglycerol), an important bioactive lipid. In the present study, by modulating SMS1 and SMS2 expression, the role of these enzymes on the elusive regulation of DAG was investigated. Because we found that modulation of SMS1 or SMS2 did not affect total levels of endogenous DAG in resting cells, whereas they produce DAG in vitro, the possibility that SMSs could modulate subcellular pools of DAG, once acute activation of the enzymes is triggered, was investigated. Stimulation of SM synthesis was induced by either treatment with short-chain ceramide analogues or by increasing endogenous ceramide at the plasma membrane, and a fluorescently labelled conventional C1 domain [from PKC (protein kinase C)] enhanced in its DAG binding activity was used to probe subcellular pools of DAG in the cell. With this approach, we found, using confocal microscopy and subcellular fractionation, that modulation of SMS1 and, to a lesser extent, SMS2 affected the formation of DAG at the Golgi apparatus. Similarly, down-regulation of SMS1 and SMS2 reduced the localization of the DAG-binding protein PKD (protein kinase D) to the Golgi. These results provide direct evidence that both enzymes are capable of regulating the formation of DAG in cells, that this pool of DAG is biologically active, and for the first time directly implicate SMS1 and SMS2 as regulators of DAG-binding proteins in the Golgi apparatus.
AMP-activated-protein-kinase (AMPK) is a key sensor and regulator of cellular and whole-body energy metabolism and plays a key role in regulation of lipid metabolism. Since lipid metabolism has been implicated in neuronal amyloid-β (Aβ) homeostasis and onset of Alzheimer's disease, we investigated the involvement of AMPK in neuronal lipid metabolism and Aβ production. We observed in cultured rat cortical neurons that Aβ production was significantly reduced when the neurons were stimulated with AMPK activator, 5-aminoimidazole-4-carboxamide-1-Dribofuranoside (AICAR), but increased when AMPKα2 was knocked out, thus indicating the role of AMPK in amyloidogenesis. Although the detailed mechanisms by which AMPK regulates Aβ generation is not well understood, AMPK-mediated alterations in cholesterol and sphingomyelin homeostasis and in turn the altered distribution of Aβ precursor-protein (APP) in cholesterol and sphingomyelin rich membrane lipid rafts participate in Aβ generation. Taken together, this is the first report on the role of AMPK in regulation of neuronal amyloidogenesis.
Lipopolysaccharide (LPS) and interferon-c (IFN) treatment of C6 rat glioma cells increased the intracellular ceramide level and the expression of the inducible nitric oxide synthase (iNOS) gene. To delineate the possible role of ceramide in the induction of iNOS, we examined the source of intracellular ceramide and associated signal transduction pathway(s) with the use of inhibitors of intracellular ceramide generation. The inhibitor of neutral sphingomyelinase (3-O-methylsphingomyelin, MSM) inhibited the induction of iNOS, whereas inhibitor of acidic sphingomyelinase (SR33557) or that of ceramide de novo synthesis (fumonisin B1) had no effect on the induction of iNOS. MSM-mediated inhibition of iNOS induction was reversed by the supplementation of exogenous C 8 -ceramide, suggesting that ceramide production by neutral sphingomyelinase (nSMase) is a key mediator in the induction of iNOS. The MSM-mediated inhibition of iNOS gene expression correlated with the decrease in the activity of ras. Inhibition of co-transfected iNOS promoter activity by dominant negative ras supported the role of ras in the nSMase-dependent regulation of iNOS gene. NF-jB DNA binding activity and its transactivity were also reduced by MSM pretreatment, and were completely reversed by the supplementation of C 8 -ceramide. As the dominant negative ras also reduced NF-jB transactivity, NF-jB activation may be downstream of ras. Our results suggest that ceramide generated by nSMase may be a critical mediator in the regulation of iNOS gene expression via ras-mediated NF-jB activation under inflammatory conditions. Keywords: ceramide, inducible nitric oxide synthase, neutral sphingomyelinase, NF-jB, ras. Nitric oxide (NO), a product of inducible nitric oxide synthase (iNOS), is a diffusible gas involved in many physiological and diverse pathological conditions. At low concentrations, NO has been shown to play a role in neurotransmission and vasodilation, while at higher concentrations, it is neurotoxic. This is of particular importance in neurodegenerating conditions such as demyelinating disease and in ischemia and traumatic injuries associated with infiltrating peripheral mononuclear cells and the production of proinflammatory cytokines (Koprowski et al. 1993;Mitrovic et al. 1994;Bonfoco et al. 1995), where astrocytes and microglia-derived NO could contribute to oligodendrocyte degeneration and neuronal death. In the brain, at least three genes encode NO synthase isoforms, with significant differences in their regulation. Neuronal and endothelial NOS are constitutively expressed in astrocytes and in subpopulations of neurons and are regulated predominantly through intracellular calcium/calmodulin signals (Bredt and Snyder 1990;Busse and Mulsch 1990). The third NOS, iNOS that is present in macrophages and astrocytes, is regulated at the transcriptional level in response to stimuli [e.g. cytokine/lipopolysaccharide (LPS)] (Nathan 1992; Jaffrey and Snyder 1995). Abbreviations used: C/EBP, CCAAT box/enhancer binding protein; iNOS, inducib...
In rat glial cells the lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.