This paper examines a class of Kirchhoff type equations that involve sign-changing weight functions. Using Nehari manifold and fibering map, the existence of multiple positive solutions is established.
When the Jacobian of a computed numerical solution of a polynomial system in C n allows very small singular values, the solution could be isolated with a multiple multiplicity or may belong to a solution component with positive dimension. The algorithm constructed in this article intends to differentiate those cases by determining the dimension of the solution component M in which the solution lies. Of particular interest is the case when dim(M) = 0, then the solution is of course isolated. While the proposed algorithm is experimental, it has been tested successfully on the class of problems with the solution in question belonging to a reduced component. Numerical results are provided to illustrate the accuracy of the algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.