Modeling and control of human-involved manufacturing systems poses a huge challenge on how to model all possible interactions among system components within the time and space dimensions. As the manufacturing environment are getting complicated, the importance of human in the manufacturing system is getting more and more spotlighted to incorporate the manufacturing flexibility. This paper presents a formal modeling methodology of affordance-based MPSG (Message-based Part State Graph) for a human-machine collaboration system incorporating supervisory control scheme for flexible manufacturing systems in automotive industry. Basically, we intend to extend the existing model of affordance-based MPSG to the real industrial application of humanmachine cooperative environments. The suggested extension with the real industrial example is illustrated in three steps; first, the manufacturing process and relevant data are analyzed in perspectives of MABA-MABA and the supervisory control; second, the manufacturing processes and task allocation between human and machine are mapped onto the concept of MABA-MABA; and the last, the affordance-based MPSG of humanmachine collaboration for the manufacturing process is presented with UMLs for verification. †
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.