The water proton spin relaxivity, colloidal stability, and biocompatibility of nanoparticle-based magnetic resonance imaging (MRI) contrast agents depend on the surface-coating ligands. Here, poly(acrylic acid-co-maleic acid) (PAAMA) (Mw = ~3000 amu) is explored as a surface-coating ligand of ultrasmall gadolinium oxide (Gd2O3) nanoparticles. Owing to the numerous carboxylic groups in PAAMA, which allow its strong conjugation with the nanoparticle surfaces and the attraction of abundant water molecules to the nanoparticles, the synthesized PAAMA-coated ultrasmall Gd2O3 nanoparticles (davg = 1.8 nm and aavg = 9.0 nm) exhibit excellent colloidal stability, extremely low cellular toxicity, and a high longitudinal water proton spin relaxivity (r1) of 40.6 s−1mM−1 (r2/r1 = 1.56, where r2 = transverse water proton spin relaxivity), which is approximately 10 times higher than those of commercial molecular contrast agents. The effectiveness of PAAMA-coated ultrasmall Gd2O3 nanoparticles as a T1 MRI contrast agent is confirmed by the high positive contrast enhancements of the in vivo T1 MR images at the 3.0 T MR field.
Although metastable crystal structures have received much attention owing to their utilization in various fields, their phase‐transition to a thermodynamic structure has attracted comparably little interest. In the case of nanoscale crystals, such an exothermic phase‐transition releases high energy within a confined surface area and reconstructs surface atomic arrangement in a short time. Thus, this high‐energy nanosurface may create novel crystal structures when some elements are supplied. In this work, the creation of a ruthenium carbide (RuCX, X < 1) phase on the surface of the Ru nanocrystal is discovered during phase‐transition from cubic‐close‐packed to hexagonal‐close‐packed structure. When the electrocatalytic hydrogen evolution reaction (HER) is tested in alkaline media, the RuCX exhibits a much lower overpotential and good stability relative to the counterpart Ru‐based catalysts and the state‐of‐the‐art Pt/C catalyst. Density functional theory calculations predict that the local heterogeneity of the outermost RuCX surface promotes the bifunctional HER mechanism by providing catalytic sites for both H adsorption and facile water dissociation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.