Currently, the detection of targets using drone-mounted imaging equipment is a very useful technique and is being utilized in many areas. In this study, we focus on acoustic signal detection with a drone detecting targets where sounds occur, unlike image-based detection. We implement a system in which a drone detects acoustic sources above the ground by applying a phase difference microphone array technique. Localization methods of acoustic sources are based on beamforming methods. The background and self-induced noise that is generated when a drone flies reduces the signal-to-noise ratio for detecting acoustic signals of interest, making it difficult to analyze signal characteristics. Furthermore, the strongly correlated noise, generated when a propeller rotates, acts as a factor that degrades the noise source direction of arrival estimation performance of the beamforming method. Spectral reduction methods have been effective in reducing noise by adjusting to specific frequencies in acoustically very harsh situations where drones are always exposed to their own noise. Since the direction of arrival of acoustic sources estimated from the beamforming method is based on the drone’s body frame coordinate system, we implement a method to estimate acoustic sources above the ground by fusing flight information output from the drone’s flight navigation system. The proposed method for estimating acoustic sources above the ground is experimentally validated by a drone equipped with a 32-channel time-synchronized MEMS microphone array. Additionally, the verification of the sound source location detection method was limited to the explosion sound generated from the fireworks. We confirm that the acoustic source location can be detected with an error performance of approximately 10 degrees of azimuth and elevation at the ground distance of about 150 m between the drone and the explosion location.
As considerable interests in noise emission from a ship have been increased, the need for localization of noise sources of the marine propeller generating cavitation and singing noise is looming large. In many practical cases, cavitation and singing noise occur on a particular position of the certain blade of the propeller. It is so important to know the position of noise source correctly in order to eliminate or suppress unwanted noise. In this study, we develop "noise source localization technology" using TDOA method.Experimental measurements carried out at the circulating water channel and towing tank show that noise source can be clearly identified and localized using TDOA method.
A technique for improving estimation accuracy is introduced in order to locate the impact position of artillery shell during the weapon scoring test. Study on localization of impacts using acoustic measurement has been conducted and the usability of sensor array is verified with experiments.When the blast occurs above the ground in the firing range, the acoustic sensor above the ground can measure the directly propagated sound with the ground-reflected one. In this study, a method for reducing estimation error by using the reflection signal measurements based on the time difference of arrival method. Considering the reflection sound works as same as placing a virtual sensor symmetrically through the ground. This idea enables a virtual three-dimensional array configuration with a two-dimensional plane array above the ground as such. The time difference between the direct and the reflected propagations can be estimated using cepstrum analysis. Performance test has been made in the simulation experiment in the football size area.
This paper presents an application of an optimal smoothing filter for moving target tracking problem based on measured noise source. In order to measure distance and velocity for the moving target, a beamforming method is applied to use the noise source by using microphone array. Also a Kalman filter and an optimal smoothing algorithm are adopted to improve accuracy of trajectory estimation by using a Singer target model. The simulation is conducted with a missile dynamics to verify performance of the optimal smoothing filter, and a model rocket is used for experiment environment to compare the trajectory estimation results between the beamforming, the Kalman filter, and the smoother. The Kalman filter results show better tracking performance than the beamforming technique, and the estimation results of the optimal smoother outperform the Kalman filter in terms of trajectory accuracy in the experiment results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.