<p>This paper presents modeling of power delivery network (PDN) impedance with varying decoupling capacitor placements using machine learning techniques. The use of multilayer perceptron artificial neural networks (ANN) and gaussian process regression (GPR) techniques are explored, and the effects of the hyperparameters such as the number of hidden neurons in the ANN, and the choice of kernel functions in the GPR are investigated. The best performing networks in each case are selected and compared in terms of accuracy using test data consisting of PDN impedance responses that were never encountered during training. Results show that the GPR models were significantly more accurate than the ANN models, with an average mean absolute error of 5.23 mΩ compared to 11.33 mΩ for the ANN.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.