This paper concentrates on the size of mango fruit. Mangoes grading by humans in current agricultural industry are subjective, inconsistent and inefficient because there is an individual difference in visual inspecting which is affected by environment, physical and psychological conditions. In this paper, fuzzy logic is used to create a novel grading method. A membership function and fuzzy rules are generated from training instances based on minimum entropy formulas. Computer and Red Green and Blue (RGB) fiber optic sensor are used to examine and clarify data corresponding to human judgment and intelligence. A total of 77.78% of accuracy is achevied under the proposed method which capable of differentiating three different grades of mango. This paper offers a competent practice and capable to be applied to improve and standardize the current mango fruit grading system.
Coronavirus Disease 2019 (COVID-19) was initially reported in December 2019 in Wuhan City, China, as a result of a respiratory pandemic. Since then, the infection has spread rapidly and uncontrollably around the globe, prompting the World Health Organization (WHO) to declare it a pandemic. The study's overall objective is to imitate the COVID-19 infectious trend in Selangor. The SIR model is used to forecast infection and the course of COVID-19 diffusion and estimate the fraction of the population infected. As a result, the Susceptible, Infectious, and Recovered (SIR) model was used to accomplish the study's aims. From March 23, 2020, to June 30, 2020, 100 days of COVID-19 data were extracted from a database on the Malaysian Ministry of Health's website. The RStudio software was used to analyse data on infectious trends in this study. The SIR model is used to predict the basic reproduction ratio, , based on actual and simulated infectious trends for comparison. The value of the basic reproduction ratio for simulating the infectious trend is 2.0, and the basic reproduction ratio for modelling the infectious trend with the entire population of Selangor is 1.15429. According to the findings of this study, the reproduction ratio would affect the number of infected individuals by reducing the number of recovered individuals. The effectiveness of lockdown in preventing COVID-19 disease in Selangor was demonstrated by a significant reduction in the basic reproduction ratio, .
In late 2019, the unique severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also known as COVID-19, first emerged in Wuhan City, Hubei Province, China and quickly spread throughout the world. Until June 30, 2022, a total of 4,566,055 cases of COVID-19 have been reported in Malaysia, with 35,765 deaths and 4,500,856 recovered cases. This study aims to generalise a deterministic SIR model with vital dynamics for understanding the proliferation of infectious diseases. The SIR model with vital dynamics is more realistic in mimicking reality than the basic SIR model because it can determine the dynamic behaviours of COVID-19 over a more extended period. The SIR model utilises vital dynamics with unequal birth and death rates. Furthermore, the SIR model with vital dynamics is rescaled with the total time-varying population and analysed according to its epidemic condition. The results indicated that the number of infected individuals would peak about 10 - 15 days and reach their steady state about 25 - 60 days. The findings of this research may help policymakers establish, plan, and implement effective COVID-19 pandemic response strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.