BackgroundSelecting positive end-expiratory pressure (PEEP) during mechanical ventilation is important, as it can influence disease progression and outcome of acute respiratory distress syndrome (ARDS) patients. However, there are no well-established methods for optimizing PEEP selection due to the heterogeneity of ARDS. This research investigates the viability of titrating PEEP to minimum elastance for mechanically ventilated ARDS patients.MethodsTen mechanically ventilated ARDS patients from the Christchurch Hospital Intensive Care Unit were included in this study. Each patient underwent a stepwise PEEP recruitment manoeuvre. Airway pressure and flow data were recorded using a pneumotachometer. Patient-specific respiratory elastance (Ers) and dynamic functional residual capacity (dFRC) at each PEEP level were calculated and compared. Optimal PEEP for each patient was identified by finding the minima of the PEEP-Ers profile.ResultsMedian Ers and dFRC over all patients and PEEP values were 32.2 cmH2O/l [interquartile range (IQR) 25.0–45.9] and 0.42 l [IQR 0.11–0.87]. These wide ranges reflect patient heterogeneity and variable response to PEEP. The level of PEEP associated with minimum Ers corresponds to a high change of functional residual capacity, representing the balance between recruitment and minimizing the risk of overdistension.ConclusionsMonitoring patient-specific Ers can provide clinical insight to patient-specific condition and response to PEEP settings. The level of PEEP associated with minimum-Ers can be identified for each patient using a stepwise PEEP recruitment manoeuvre. This ‘minimum elastance PEEP’ may represent a patient-specific optimal setting during mechanical ventilation.Trial registrationAustralian New Zealand Clinical Trials Registry: ACTRN12611001179921.Electronic supplementary materialThe online version of this article (doi:10.1186/s40814-015-0006-2) contains supplementary material, which is available to authorized users.
While lung protective mechanical ventilation (MV) guidelines have been developed to avoid ventilator-induced lung injury (VILI), a one-size-fits-all approach cannot benefit every individual patient. Hence, there is significant need for the ability to provide patient-specific MV settings to ensure safety, and optimise patient care. Model-based approaches enable patient-specific care by identifying time-varying patient-specific parameters, such as respiratory elastance, E rs , to capture inter- and intra-patient variability. However, patient-specific parameters evolve with time, as a function of disease progression and patient condition, making predicting their future values crucial for recommending patient-specific MV settings. This study employs stochastic modelling to predict future E rs values using retrospective patient data to develop and validate a model indicating future intra-patient variability of E rs . Cross validation results show stochastic modelling can predict future elastance ranges with 92.59 and 68.56% of predicted values within the 5–95% and the 25–75% range, respectively. This range can be used to ensure patients receive adequate minute ventilation should elastance rise and minimise the risk of VILI should elastance fall. The results show the potential for model-based protocols using stochastic model prediction of future E rs values to provide safe and patient-specific MV. These results warrant further investigation to validate its clinical utility.
Background: Positive end-expiratory pressure (PEEP) at minimum respiratory elastance during mechanical ventilation (MV) in patients with acute respiratory distress syndrome (ARDS) may improve patient care and outcome. The Clinical utilisation of respiratory elastance (CURE) trial is a two-arm, randomised controlled trial (RCT) investigating the performance of PEEP selected at an objective, model-based minimal respiratory system elastance in patients with ARDS. Methods and design: The CURE RCT compares two groups of patients requiring invasive MV with a partial pressure of arterial oxygen/fraction of inspired oxygen (PaO2/FiO2) ratio ≤ 200; one criterion of the Berlin consensus definition of moderate (≤ 200) or severe (≤ 100) ARDS. All patients are ventilated using pressure controlled (bi-level) ventilation with tidal volume = 6-8 ml/kg. Patients randomised to the control group will have PEEP selected per standard practice (SPV). Patients randomised to the intervention will have PEEP selected based on a minimal elastance using a model-based computerised method. The CURE RCT is a single-centre trial in the intensive care unit (ICU) of Christchurch hospital, New Zealand, with a target sample size of 320 patients over a maximum of 3 years. The primary outcome is the area under the curve (AUC) ratio of arterial blood oxygenation to the fraction of inspired oxygen over time. Secondary outcomes include length of time of MV, ventilator-free days (VFD) up to 28 days, ICU and hospital length of stay, AUC of oxygen saturation (SpO 2 )/FiO 2 during MV, number of desaturation events (SpO 2 < 88%), changes in respiratory mechanics and chest x-ray index scores, rescue therapies (prone positioning, nitric oxide use, extracorporeal membrane oxygenation) and hospital and 90-day mortality. Discussion: The CURE RCT is the first trial comparing significant clinical outcomes in patients with ARDS in whom PEEP is selected at minimum elastance using an objective model-based method able to quantify and consider both inter-patient and intra-patient variability. CURE aims to demonstrate the hypothesized benefit of patient-specific PEEP and attest to the significance of real-time monitoring and decision-support for MV in the critical care environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.