The development of cost-effective and environmentally friendly photocatalysts and photosensitizers has received tremendous attention because of their potential utilization in solar-light-harvesting applications. In this respect, carbon dots (CDs) prepared by bottom-up methods have been considered to be promising light-harvesting materials. Through their preparation from various molecular precursors and synthetic methods, CDs exhibit excellent optical and charge-transfer properties. Furthermore, their photophysical properties can be readily optimized and enhanced by means of doping, functionalization, and post-synthetic treatment. In this review, we summarize the recent progress in CDs synthesized using bottom-up approaches. These CDs exhibit strong light absorption and unique electron donor/acceptor capabilities for light-harvesting applications. We anticipate that this review will provide new insights into novel types of photosensitizers and photocatalysts for a wide range of applications.
An efficient water oxidation photoanode based on hematite has been designed and fabricated by tailored assembly of graphene oxide (GO) nanosheets and cobalt polyoxometalate (Co-POM) water oxidation catalysts into a nacre-like multilayer architecture on a hematite photoanode. The deposition of catalytic multilayers provides a high photocatalytic efficiency and photoelectrochemical stability to underlying hematite photoanodes. Compared to the bare counterpart, the catalytic multilayer electrode exhibits a significantly higher photocurrent density and large cathodic shift in onset potential (∼369 mV) even at neutral pH conditions due to the improved charge transport and catalytic efficiency from the rational and precise assembly of GO and Co-POM. Unexpectedly, the polymeric base layer deposited prior to the catalytic multilayers improves the performance even more by facilitating the transfer of photogenerated holes for water oxidation through modification of the flat band potential of the underlying photoelectrode. This approach utilizing polymeric base and catalytic multilayers provides an insight into the design of highly efficient photoelectrodes and devices for artificial photosynthesis.
Water splitting is considered the most attractive pursuit in the field of solar energy conversion. In this study, we report the synthesis and application of a supramolecular hybrid of carbon nanodot (CD) and cobalt polyoxometalate (Co-POM) to solar water oxidation. The self-assembly of the alginate-based CD and Co-POM led to the formation of a spherical hybrid of CD/Co-POM. Owing to the facile transfer of photogenerated holes from CD under visible light irradiation, the hybrid donor-acceptor type of CD/Co-POM enabled the rapid scavenging of holes and accumulation of a long-lived oxidation state of Co-POM for efficient solar water oxidation, outperforming conventional [Ru(bpy)]-based systems. We believe that this study offers new insights into the development of CD-based nanocomposites with various photocatalytic and optoelectronic applications.
The tunable photoluminescence of carbon-based nanomaterials has received much attention for a wide range of applications. Herein, a unique, broad-solvatochromic hybrid carbon nanosheet (CNS) synthesized through the hydrothermal carbonization of molecular precursors exploiting graphene oxide as a template is reported, resulting in the formation of clusters of carbon nanorings on the surface of graphene-oxide nanosheets. Under UV and visible-light excitation, the hybrid CNS exhibits tunable emission spanning the wide range of colors in a series of solvents with different polarities. This interesting spectroscopic behavior is found to originate from hydrogen-bonding interactions between CNS and solvents, which eventually induce the morphological transition of CNS from 2D sheets to 3D crumpled morphologies, affecting the lifetimes of emissive states. This novel soft carbon nanostructure may open up a new possibility in tailoring the photophysical properties of carbon nanomaterials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.