Two-dimensional (2D) molybdenum disulfide (MoS2) is a promising material for constructing high-performance visible photosensor arrays because of its high mobility and scale-up process. These distinct properties enable the construction of practical optoelectrical sensor arrays. However, contact engineering for MoS2 films is not still optimized. In this work, we inserted a graphene interlayer between the MoS2 films and Au contacts (graphene/Au) via the wet-transfer method to boost the device performance. Using graphene/Au contacts, outstanding electrical properties, namely field-effect mobility of 12.06 cm2/V∙s, on/off current ratio of 1.0 × 107, and responsivity of 610 A/W under illumination at 640 nm, were achieved. These favorable results were from the Fermi-level depinning effect induced by the graphene interlayer. Our results may help to construct large-area photonic sensor arrays based on 2D materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.