Tweety family member 3 (TTYH3) is a calcium-activated chloride channel with a non-pore-forming structure that controls cell volume and signal transduction. We investigated the role of TTYH3 as a cancer-promoting factor in bladder cancer. The mRNA expression of TTYH3 in bladder cancer patients was investigated using various bioinformatics databases. The results demonstrated that the increasingly greater expression of TTYH3 increasingly worsened the prognosis of patients with bladder cancer. TTYH3 knockdown bladder cancer cell lines were constructed by their various cancer properties measured. TTYH3 knockdown significantly reduced cell proliferation and sphere formation. Cell migration and invasion were also significantly reduced in knockdown bladder cancer cells, compared to normal bladder cancer cells. The knockdown of TTYH3 led to the downregulation of H-Ras/A-Raf/MEK/ERK signaling by inhibiting fibroblast growth factor receptor 1 (FGFR1) phosphorylation. This signaling pathway also attenuated the expression of c-Jun and c-Fos. The findings implicate TTYH3 as a potential factor regulating the properties of bladder cancer and as a therapeutic target.
Background The incidence of bladder cancer (BCa) is approximately four times higher in men than in women. To develop effective BCa treatments, there is an urgent need to understand the differences in the BCa control mechanisms based on gender. Our recent clinical study showed that androgen suppression therapy using 5α-reductase inhibitors and androgen deprivation therapy affects BCa progression, but the underlying mechanisms are still unknown. Methods mRNA expression levels of the androgen receptor (AR) and SLC39A9 (membrane AR) in T24 and J82 BCa cells were evaluated by reverse transcription-PCR (RT-PCR). The effect of dutasteride, a 5α-reductase inhibitor, in BCa progression was determined in cells transfected with control and AR-overexpressing plasmids. In addition, cell viability and migration assays, RT-PCR, and western blot analysis were performed to analyze the effect of dutasteride on BCa in the presence of testosterone. Finally, steroidal 5α-reductase 1 (SRD5A1), one of the dutasteride target genes, was silenced in T24 and J82 BCa cells using control and shRNA-containing plasmids, and the oncogenic role of SRD5A1 was evaluated. Results Dutasteride treatment led to significant inhibition of the testosterone-induced increase dependent on AR and SLC39A9 in cell viability and migration of T24 and J82 BCa cells and induced alterations in the expression level of cancer progression proteins, such as metalloproteases, p21, BCL-2, NF-KB, and WNT in AR-negative BCa. Furthermore, the bioinformatic analysis showed that mRNA expression levels of SRD5A1 were significantly higher in BCa tissues than in normal paired tissues. A positive correlation between SRD5A1 expression and poor patient survival was observed in patients with BCa. Also, Dutasteride treatment reduced cell proliferation and migration via blocking the SRD5A1 in BCa. Conclusions Dutasteride inhibited testosterone-induced BCa progression dependent on SLC39A9 in AR-negative BCa and repressed oncogenic signaling pathways, including those of metalloproteases, p21, BCL-2, NF-KB, and WNT. Our results also suggest that SRD5A1 plays a pro-oncogenic role in BCa. This work provides potential therapeutic targets for the treatment of BCa.
Transmembrane Bax Inhibitor Motif-containing 6 (TMBIM6) has been reported to regulate cell death pathways and is overexpressed in several types of cancers. In this study, we investigated whether high expression of TMBIM6 in breast cancer was significantly associated with cancer invasiveness. Knockdown of TMBIM6 reduced proliferation and migration of invasive breast cancer cells through downregulation of the MAPK/ERK signaling pathway. Moreover, we suggested that expression of miR-181a was significantly suppressed upon TMBIM6 knockdown. In contrast, overexpression of TMBIM6 significantly increased cell invasion and migration through up-regulation of mesenchymal markers and matrix metalloproteinase-9 (MMP-9) and enhanced activation of the MAPK/ERK signaling pathway. We also observed that up-regulation of TMBIM6 significantly increased the expression of miR-181a by TMBIM6-mediated pathway. TMBIM6 and miR-181a-mediated ERK activation induced the expression of Snail-1 and Snail-2 in FOSL-1/C-JUN-dependent manner. Overall, our data demonstrated that TMBIM6-induced miR-181a up-regulation plays an important role in the efficient modulation of migration and invasion of breast cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.