We present the initial phase of the Korean Genome Project (Korea1K), including 1094 whole genomes (sequenced at an average depth of 31×), along with data of 79 quantitative clinical traits. We identified 39 million single-nucleotide variants and indels of which half were singleton or doubleton and detected Korean-specific patterns based on several types of genomic variations. A genome-wide association study illustrated the power of whole-genome sequences for analyzing clinical traits, identifying nine more significant candidate alleles than previously reported from the same linkage disequilibrium blocks. Also, Korea1K, as a reference, showed better imputation accuracy for Koreans than the 1KGP panel. As proof of utility, germline variants in cancer samples could be filtered out more effectively when the Korea1K variome was used as a panel of normals compared to non-Korean variome sets. Overall, this study shows that Korea1K can be a useful genotypic and phenotypic resource for clinical and ethnogenetic studies.
Background KOREF is the Korean reference genome, which was constructed with various sequencing technologies including long reads, short reads, and optical mapping methods. It is also the first East Asian multiomic reference genome accompanied by extensive clinical information, time-series and multiomic data, and parental sequencing data. However, it was still not a chromosome-scale reference. Here, we updated the previous KOREF assembly to a new chromosome-level haploid assembly of KOREF, KOREF_S1v2.1. Oxford Nanopore Technologies (ONT) PromethION, Pacific Biosciences HiFi-CCS, and Hi-C technology were used to build the most accurate East Asian reference assembled so far. Results We produced 705 Gb ONT reads and 114 Gb Pacific Biosciences HiFi reads, and corrected ONT reads by Pacific Biosciences reads. The corrected ultra-long reads reached higher accuracy of 1.4% base errors than the previous KOREF_S1v1.0, which was mainly built with short reads. KOREF has parental genome information, and we successfully phased it using a trio-binning method, acquiring a near-complete haploid-assembly. The final assembly resulted in total length of 2.9 Gb with an N50 of 150 Mb, and the longest scaffold covered 97.3% of GRCh38’s chromosome 2. In addition, the final assembly showed high base accuracy, with <0.01% base errors. Conclusions KOREF_S1v2.1 is the first chromosome-scale haploid assembly of the Korean reference genome with high contiguity and accuracy. Our study provides useful resources of the Korean reference genome and demonstrates a new strategy of hybrid assembly that combines ONT's PromethION and PacBio's HiFi-CCS.
Indoor air quality control becomes a critical role in protecting human life due to a significant increase in indoor living time with industrial development. However, air purifier and ventilation systems are installed in many indoor places, and qualities of air are not guaranteed without effective monitoring systems. In this study, we developed a smart indoor air quality monitoring device, measuring components of PM10, PM2.5, PM1, CO, CO2, VOCs, temperature and humidity. The smart air quality monitoring system is commutated with a developed smartphone application using short and long distance communication modules. The smart application basically provides air quality information (daily, monthly, yearly), air management methods, and emerging environmental issues. For the system verification, we tested the developed air quality monitoring system with other reliable measuring devices. As results, the gaps between our developed system and other reliable measuring devices are PM10 (±4%), PM2.5 (±4%), CO (±1%), CO2 (±1%), VOCs (±2%), temperature (±1%) and humidity (±2%). We found that the developed smart air quality monitoring system is sufficiently reliable comparing to other measuring devices. Therefore, the smart air quality monitoring system would help improve indoor air quality in real time and can be used for future air quality prediction.
Background The polygenic risk score (PRS) developed for coronary artery disease (CAD) is known to be effective for classifying patients with CAD and predicting subsequent events. However, the PRS was developed mainly based on the analysis of Caucasian genomes and has not been validated for East Asians. We aimed to evaluate the PRS in the genomes of Korean early-onset AMI patients (n = 265, age ≤50 years) following PCI and controls (n = 636) to examine whether the PRS improves risk prediction beyond conventional risk factors. Results The odds ratio of the PRS was 1.83 (95% confidence interval [CI]: 1.69–1.99) for early-onset AMI patients compared with the controls. For the classification of patients, the area under the curve (AUC) for the combined model with the six conventional risk factors (diabetes mellitus, family history of CAD, hypertension, body mass index, hypercholesterolemia, and current smoking) and PRS was 0.92 (95% CI: 0.90–0.94) while that for the six conventional risk factors was 0.91 (95% CI: 0.85–0.93). Although the AUC for PRS alone was 0.65 (95% CI: 0.61–0.69), adding the PRS to the six conventional risk factors significantly improved the accuracy of the prediction model (P = 0.015). Patients with the upper 50% of PRS showed a higher frequency of repeat revascularization (hazard ratio = 2.19, 95% CI: 1.47–3.26) than the others. Conclusions The PRS using 265 early-onset AMI genomes showed improvement in the identification of patients in the Korean population and showed potential for genomic screening in early life to complement conventional risk prediction.
CHARGE syndrome has been estimated to occur in 1:10,000 births worldwide and shows various clinical manifestations. It is a genetic disorder characterized by a specific and a recognizable pattern of anomalies. The major clinical features are ocular coloboma, heart malformations, atresia of the choanae, growth retardation, genital hypoplasia, and ear abnormalities. The chromodomain helicase DNA-binding protein 7 (CHD7) gene, located on chromosome 8q12.1, causes CHARGE syndrome. The CHD7 protein is an adenosine triphosphate (ATP)-dependent chromatin remodeling protein. A total of 67% of patients clinically diagnosed with CHARGE syndrome have CHD7 mutations. Five hundred twenty-eight pathogenic and unique CHD7 alterations have been identified so far. We describe a patient with a CHARGE syndrome diagnosis who carried a novel de novo mutation, a c.3896T>C (p. leu1299Pro) missense mutation, in the CHD7 gene. This finding will provide more information for genetic counseling and expand our understanding of the pathogenesis and development of CHARGE syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.