nc886 is a regulatory non-coding RNA (ncRNA) whose expression is frequently silenced in malignancies. In the case of esophageal squamous cell carcinoma (ESCC), nc886 silencing is associated with shorter survival of patients, suggesting nc886’s tumor suppressor role in ESCC. However, this observation has not been complemented by an in-detail study about nc886’s impact on gene expression and cellular phenotypes. Here we have shown that nc886 inhibits AKT, a key protein in a renowned pro-survival pathway in cancer. nc886-silenced cells (nc886− cells) have activated AKT and altered expression of cell cycle genes. nc886− cells tend to have lower expression of CDKN2A and CDKN2C, both of which are inhibitors for cyclin-dependent kinase (CDK), and higher expression of CDK4 than nc886-expressing cells. As a result, nc886− cells are hyperactive in the progression of the G1 to S cell cycle phase, proliferate faster, and are more sensitive to palbociclib, which is a cancer therapeutic drug that targets CDK4/6. Experimentally by nc886 expression and knockdown, we have determined the AKT target genes and cell cycle genes that are controlled by nc886 (nc886-associated gene sets). These gene sets, in combination with pathologic staging and nc886 expression levels, are a vastly superior predictor for the survival of 108 ESCC patients. In summary, our study has elucidated in ESCC how nc886 inhibits cell proliferation to explain its tumor suppressor role and identified gene sets that are of future clinical utility, by predicting patient survival and responsiveness to a therapeutic drug.
The first synthesis of novel hybrid compounds 3-6 from epinastine (1) and salicylic acid (2) has been achieved via amide bond using molecular hybridization approach and their in vitro inhibitory activity towards nitric oxide (NO) formation in lipopolysaccharide (LPS) induced RAW 264.7 macrophages as a sign of anti-inflammatory activity has been evaluated. All the hybrid compounds synthesized 3-6 displayed better inhibitory effect against NO production than individual compounds, 1 and 2. Especially, directly conjugated hybrid compound 3 displayed concentration-dependent strong inhibition of NO production with an IC 50 value of 12.78 μM, which was significantly lower than the parent compounds 1 (IC 50 > 100 μM) and 2 (IC 50 > 100 μM). These preliminary results indicate that further studies are needed to be carried out to demonstrate the mechanism by which compound 3 exerts its inhibitory activity.
The research on resveratrol (1) has been conducted intensively over a long time due to its proven antioxidant activity and disease-fighting capabilities. Many efforts have also been made to increase these biological effects. In the present study, six new extended aromatic resveratrol analogues containing naphthalene (2) and its bioisosteres quinoline (3 and 4), isoquinoline (5) quinoxaline (6) and quinazoline (7) scaffolds were designed and synthesized using an annulation strategy. The antioxidant and anti-inflammatory activities of these compounds were investigated. All compounds showed better antioxidant activity than resveratrol in ABTS assay. As for the anti-inflammatory test, 5 and 7 exhibited better activity than resveratrol. It is worth noting that nitrogen substitution on the extended aromatic resveratrol analogues has a significant impact on cell viability. Taking the antioxidant activities and NO inhibition activities into consideration, we conclude that isoquinoline analogue 5 may qualify for the further investigation of antioxidant and anti-inflammatory therapy. Furthermore, our study results suggest that in order to improve the biological activity of polyphenolic compounds, extended aromaticity and nitrogen substitution strategy could be a viable method for the design of future drug candidates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.