Lung cancer remains one of the major causes of cancer-related death globally. Recent studies have shown that aberrant m6A levels caused by METTL3 are involved in the malignant progression of various tumors, including lung cancer. The m6A modification, the most abundant RNA chemical modification, regulates RNA stabilization, splicing, translation, decay, and nuclear export. The methyltransferase complex plays a key role in the occurrence and development of many tumors by installing m6A modification. In this complex, METTL3 is the first identified methyltransferase, which is also the major catalytic enzyme. Recent findings have revealed that METTL3 is remarkably associated with different aspects of lung cancer progression, influencing the prognosis of patients. In this review, we will focus on the underlying mechanism of METT3 in lung cancer and predict the future work and potential clinical application of targeting METTL3 for lung cancer therapy.
Indoor occupancy detection is essential for energy efficiency control and Coronavirus Disease 2019 traceability. The number and location of people can be accurately identified and determined through classroom surveillance video analysis. This information is used to manage environmental equipment such as HVAC and lighting systems to reduce energy use. However, the mainstream one-stage YOLO algorithm still uses an anchor-based mechanism and couples detection heads to predict. This results in slow model convergence and poor detection performance for densely occluded targets. Therefore, this paper proposed a novel decoupled anchor-free VariFocal loss convolutional network algorithm DFV-YOLOv5 for occupancy detection to tackle these problems. The proposed method uses the YOLOv5 algorithm as a baseline. It uses the anchor-free mechanism to reduce the number of design parameters needing heuristic tuning. Afterwards, to reduce the coupling of the model, speed up the model's convergence ability, and improve the model detection performance, the detection head is decoupled based on the YOLOv5 model. It can resolve the conflict between classification and regression tasks. In addition, we use the VariFocal loss to assign more weights to difficult data points to optimize the class imbalance problem and use the training target q to measure positive samples, treating positive and negative samples asymmetrically. The total loss function is redesigned, the L 1 loss is increased, and the ablation experiment verifies the effect of the improved loss. By applying a hybrid activation function of the sigmoid linear unit and rectified linear unit, we improved the model's nonlinear representation and reduced the model's inference time. Finally, a classroom dataset was constructed to validate the occupancy detection performance of the model. The proposed model was compared with mainstream target detection models regarding average mean precision, memory allocation, execution time, and the number of parameters on the VOC2012, CrowdHuman and self-built datasets. The experimental results show that the method significantly improves the detection accuracy and robustness, shortens the inference time, and proves the practicality of the algorithm in occupancy detection compared with the mainstream target detection model and related variants of the model.
Indoor 3D positioning system requires precise information from all three dimensions in space, but measurements in the vertical direction are usually interfered by sensors properties, unexpected obstructions, and other factors. Thus, accuracy and robustness are not guaranteed. Aiming at this problem, we propose a novel sensor fusion algorithm to improve the height estimation for a UWB-barometer integrated positioning system by introducing a pseudo reference update mechanism and the extended Kalman filter (EKF). The proposed fusion approach effectively helps with sensing noise reduction and outlier restraint. The results from numerical experiment investigations demonstrate that the accuracy and robustness of the proposed method achieved better improvement in height determination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.