Accurately predicting the possible behaviors of traffic participants is an essential capability for future autonomous vehicles. The majority of current researches fix the number of driving intentions by considering only a specific scenario. However, distinct driving environments usually contain various possible driving maneuvers. Therefore, a intention prediction method that can adapt to different traffic scenarios is needed. To further improve the overall vehicle prediction performance, motion information is usually incorporated with classified intentions. As suggested in some literature, the methods that directly predict possible goal locations can achieve better performance for long-term motion prediction than other approaches due to their automatic incorporation of environment constraints. Moreover, by obtaining the temporal information of the predicted destinations, the optimal trajectories for predicted vehicles as well as the desirable path for ego autonomous vehicle could be easily generated. In this paper, we propose a Semanticbased Intention and Motion Prediction (SIMP) method, which can be adapted to any driving scenarios by using semanticdefined vehicle behaviors. It utilizes a probabilistic framework based on deep neural network to estimate the intentions, final locations, and the corresponding time information for surrounding vehicles. An exemplar real-world scenario was used to implement and examine the proposed method.
For autonomous agents to successfully operate in real world, the ability to anticipate future motions of surrounding entities in the scene can greatly enhance their safety levels since potentially dangerous situations could be avoided in advance. While impressive results have been shown on predicting each agent's behavior independently, we argue that it is not valid to consider road entities individually since transitions of vehicle states are highly coupled. Moreover, as the predicted horizon becomes longer, modeling prediction uncertainties and multi-modal distributions over future sequences will turn into a more challenging task. In this paper, we address this challenge by presenting a multi-modal probabilistic prediction approach. The proposed method is based on a generative model and is capable of jointly predicting sequential motions of each pair of interacting agents. Most importantly, our model is interpretable, which can explain the underneath logic as well as obtain more reliability to use in real applications. A complicate real-world roundabout scenario is utilized to implement and examine the proposed method.
In order to drive safely and efficiently under merging scenarios, autonomous vehicles should be aware of their surroundings and make decisions by interacting with other road participants. Moreover, different strategies should be made when the autonomous vehicle is interacting with drivers having different level of cooperativeness. Whether the vehicle is on the merge-lane or main-lane will also influence the driving maneuvers since drivers will behave differently when they have the right-of-way than otherwise. Many traditional methods have been proposed to solve decision making problems under merging scenarios. However, these works either are incapable of modeling complicated interactions or require implementing hand-designed rules which cannot properly handle the uncertainties in real-world scenarios. In this paper, we proposed an interaction-aware decision making with adaptive strategies (IDAS) approach that can let the autonomous vehicle negotiate the road with other drivers by leveraging their cooperativeness under merging scenarios. A single policy is learned under the multi-agent reinforcement learning (MARL) setting via the curriculum learning strategy, which enables the agent to automatically infer other drivers' various behaviors and make decisions strategically. A masking mechanism is also proposed to prevent the agent from exploring states that violate common sense of human judgment and increase the learning efficiency. An exemplar merging scenario was used to implement and examine the proposed method.
Accurately tracking and predicting behaviors of surrounding objects are key prerequisites for intelligent systems such as autonomous vehicles to achieve safe and high-quality decision making and motion planning. However, there still remain challenges for multi-target tracking due to object number fluctuation and occlusion. To overcome these challenges, we propose a constrained mixture sequential Monte Carlo (CMSMC) method in which a mixture representation is incorporated in the estimated posterior distribution to maintain multi-modality. Multiple targets can be tracked simultaneously within a unified framework without explicit data association between observations and tracking targets. The framework can incorporate an arbitrary prediction model as the implicit proposal distribution of the CMSMC method. An example in this paper is a learning-based model for hierarchical time-series prediction, which consists of a behavior recognition module and a state evolution module. Both modules in the proposed model are generic and flexible so as to be applied to a class of time-series prediction problems where behaviors can be separated into different levels. Finally, the proposed framework is applied to a numerical case study as well as a task of on-road vehicle tracking, behavior recognition, and prediction in highway scenarios. Instead of only focusing on forecasting trajectory of a single entity, we jointly predict continuous motions for interactive entities simultaneously. The proposed approaches are evaluated from multiple aspects, which demonstrate great potential for intelligent vehicular systems and traffic surveillance systems.Index Terms-Trajectory prediction, multi-target tracking, sequential Monte Carlo, probabilistic graphical models, deep learning, bahavior recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.