Cross-lingual word embeddings are becoming increasingly important in multilingual NLP. Recently, it has been shown that these embeddings can be effectively learned by aligning two disjoint monolingual vector spaces through linear transformations , using no more than a small bilingual dictionary as supervision. In this work, we propose to apply an additional transformation after the initial alignment step, which moves cross-lingual synonyms towards a middle point between them. By applying this transformation our aim is to obtain a better cross-lingual integration of the vector spaces. In addition, and perhaps surprisingly, the monolingual spaces also improve by this transformation. This is in contrast to the original alignment, which is typically learned such that the structure of the monolingual spaces is preserved. Our experiments confirm that the resulting cross-lingual embeddings outperform state-of-the-art models in both monolingual and cross-lingual evaluation tasks.
Word segmentation is the task of inserting or deleting word boundary characters in order to separate character sequences that correspond to words in some language. In this article we propose an approach based on a beam search algorithm and a language model working at the byte/character level, the latter component implemented either as an n‐gram model or a recurrent neural network. The resulting system analyzes the text input with no word boundaries one token at a time, which can be a character or a byte, and uses the information gathered by the language model to determine if a boundary must be placed in the current position or not. Our aim is to use this system in a preprocessing step for a microtext normalization system. This means that it needs to effectively cope with the data sparsity present on this kind of texts. We also strove to surpass the performance of two readily available word segmentation systems: The well‐known and accessible Word Breaker by Microsoft, and the Python module WordSegment by Grant Jenks. The results show that we have met our objectives, and we hope to continue to improve both the precision and the efficiency of our system in the future.
In contrast with their monolingual counterparts, little attention has been paid to the effects that misspelled queries have on the performance of Cross-Language Information Retrieval (CLIR) systems. The present work makes a first attempt to fill this gap by extending our previous work on monolingual retrieval in order to study the impact that the progressive addition of misspellings to input queries has, this time, on the output of CLIR systems. Two approaches for dealing with this problem are analyzed in this paper. Firstly, the use of automatic spelling correction techniques for which, in turn, we consider two algorithms: the first one for the correction of isolated words and the second one for a correction based on the linguistic context of the misspelled word. The second approach to be studied is the use of character n-grams both as index terms and translation units, seeking to take advantage of their inherent robustness and language-independence. All these approaches have been tested on a from-Spanish-to-English CLIR system, that is, Spanish queries on English documents. Real, user-generated spelling errors have been used under a methodology that allows us to study the effectiveness of the different approaches to be tested and their behavior when confronted with different error rates. The results obtained show the great sensitiveness of classic word-based approaches to misspelled queries, although spelling correction techniques can mitigate such negative effects. On the other hand, the use of character n-grams provides great robustness against misspellings.
In this paper we describe our deep learning approach for solving both two-, three-and fiveclass tweet polarity classification, and twoand five-class quantification. We first trained a convolutional neural network using pretrained Twitter word embeddings, so that we could extract the hidden activation values from the hidden layers once some input had been fed to the network. These values were then used as features for a support vector machine in both the classification and quantification subtasks, together with additional linguistic information in the former scenario. The results obtained for the classification subtasks show that this approach performs better than a single convolutional network, and for the quantification part it also yields good results. Official rankings locate us: 2nd (practically tied with 1st) for the binary classification task, 2nd for binary quantification and 4th (practically tied with 3rd) for the five-class polarity classification challenge.
Research on word embeddings has mainly focused on improving their performance on standard corpora, disregarding the difficulties posed by noisy texts in the form of tweets and other types of non-standard writing from social media. In this work, we propose a simple extension to the skipgram model in which we introduce the concept of bridge-words, which are artificial words added to the model to strengthen the similarity between standard words and their noisy variants. Our new embeddings outperform baseline models on noisy texts on a wide range of evaluation tasks, both intrinsic and extrinsic, while retaining a good performance on standard texts. To the best of our knowledge, this is the first explicit approach at dealing with these types of noisy texts at the word embedding level that goes beyond the support for out-of-vocabulary words.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.