The present article studied gas sensor sensing characteristics based on surface-modified porous silicon (PS) by depositing the metal oxide semiconductor layer. The PS layer was prepared through the electrochemical etching of crystalline silicon in an HF-based solution. DC magnetron sputtering technology was used to obtain the p-CuO layer on the surface of the p-PS. The obtained material’s structural, morphological, and sensing behavior were investigated using SEM, XRD, Raman spectra, and the current–voltage characteristics. For the detection of toluene and chloroform vapors, a planar structure was used. The sensing response value revealed that the CuO/PS-based gas sensors have good sensitivity for toluene and chloroform vapors. The sensing mechanism is explained using schematic energy band diagrams. Therefore, this approach is helpful for the development of a simple, cost-effective sensor for detecting non-polar chemical analytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.