Emotion recognition from electroencephalogram (EEG) signals requires accurate and efficient signal processing and feature extraction. Deep learning technology has enabled the automatic extraction of raw EEG signal features that contribute to classifying emotions more accurately. Despite such advances, classification of emotions from EEG signals, especially recorded during recalling specific memories or imagining emotional situations has not yet been investigated. In addition, high-density EEG signal classification using deep neural networks faces challenges, such as high computational complexity, redundant channels, and low accuracy. To address these problems, we evaluate the effects of using a simple channel selection method for classifying self-induced emotions based on deep learning. The experiments demonstrate that selecting key channels based on signal statistics can reduce the computational complexity by 89% without decreasing the classification accuracy. The channel selection method with the highest accuracy was the kurtosis-based method, which achieved accuracies of 79.03% and 79.36% for the valence and arousal scales, respectively. The experimental results show that the proposed framework outperforms conventional methods, even though it uses fewer channels. Our proposed method can be beneficial for the effective use of EEG signals in practical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.