PurposeTo characterize bilateral visual function, interocular variability and progression by using static perimetry–derived volumetric and pointwise metrics in subjects with retinitis pigmentosa associated with mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene.MethodsThis was a prospective longitudinal observational study of 47 genetically confirmed subjects. Visual function was assessed with ETDRS and Pelli-Robson charts; and Octopus 900 static perimetry using a customized, radially oriented 185-point grid. Three-dimensional hill-of-vision topographic models were produced and interrogated with the Visual Field Modeling and Analysis software to obtain three volumetric metrics: VTotal, V30, and V5. These were analyzed together with Octopus mean sensitivity values. Interocular differences were assessed with the Bland-Altman method. Metric-specific exponential decline rates were calculated.ResultsBaseline symmetry was demonstrated by relative interocular difference values of 1% for VTotal and 8% with V30. Degree of symmetry varied between subjects and was quantified with the subject percentage interocular difference (SPID). SPID was 16% for VTotal and 17% for V30. Interocular symmetry in progression was greatest when quantified by VTotal and V30, with 73% and 64% of subjects possessing interocular rate differences smaller in magnitude than respective annual progression rates. Functional decline was evident with increasing age. An overall annual exponential decline of 6% was evident with both VTotal and V30.ConclusionsIn general, good interocular symmetry exists; however, there was both variation between subjects and with the use of various metrics. Our findings will guide patient selection and design of RPGR treatment trials, and provide clinicians with specific prognostic information to offer patients affected by this condition.
PurposeThis is a quantitative study of retinal structure, progression rates, and interocular symmetry in retinitis pigmentosa GTPase regulator gene (RPGR)-associated retinopathy using spectral-domain optical coherence tomography (OCT).DesignProspective, observational cohort study.MethodsThirty-eight subjects at Moorfields Eye Hospital in London were assessed with 2 spectral-domain OCT–derived ellipzoid zone (EZ) metrics with repeatability assessments. EZ width (EZW) measurements were made on transfoveal line scans. En face images of the EZ area (EZA) were generated from high-density macular volume scans and were quantified. Baseline size, progression rate, symmetry, associations with age and genotype, and baseline structure–function correlation were investigated.ResultsBaseline EZW and EZA measurements were 1963.6 μm and 3.70 mm2, respectively. The mean EZW progression rate was 233.6 μm per year, and the mean EZA rate was 0.67 mm2 per year. Relative interocular difference as an index of symmetry was 3% for both metrics, indicating good baseline symmetry in general—although significant variation existed across the cohort. Analysis of variance found a significant effect of age but not genotype on EZ dimension and progression rates. Larger EZ dimension and greater progression were seen in younger subjects. A positive correlation between EZ dimension and progression was evident. Overall exponential decline rates of 8.2% with EZW and 15.5% with EZA were obtained. Good functional correlation was found with EZW demonstrating stronger correlation; however, EZA correlation with function was also significant.ConclusionsEZ metrics are sensitive structural biomarkers for measuring residual extent and progression in RPGR-associated retinopathy. Our elucidation of the natural history will provide clinicians and patients with more knowledge about the condition and inform the design and interpretation of interventional trials.
Endpoint development trials are underway across the spectrum of retinal disease. New validated endpoints are urgently required for the assessment of emerging gene therapies and in preparation for the arrival of novel therapeutics targeting early stages of common sight-threatening conditions such as age-related macular degeneration. Visual function measures are likely to be key candidates in this search. Over the last two decades, microperimetry has been used extensively to characterize functional vision in a wide range of retinal conditions, detecting subtle defects in retinal sensitivity that precede visual acuity loss and tracking disease progression over relatively short periods. Given these appealing features, microperimetry has already been adopted as an endpoint in interventional studies, including multicenter trials, on a modest scale. A review of its use to date shows a concurrent lack of consensus in test strategy and a wealth of innovative disease and treatment-specific metrics which may show promise as clinical trial endpoints. There are practical issues to consider, but these have not held back its popularity and it remains a widely used psychophysical test in research. Endpoint development trials will undoubtedly be key in understanding the validity of microperimetry as a clinical trial endpoint, but existing signs are promising.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.