We propose a pre-compensated recording process of holographic optical element (HOE) lenses, where both of reference and signal waves have spherical wavefronts, for solving a wavelength mismatch problem between the recording and displaying process. Based on a localized approximation for aperiodic volume gratings, the wavelength mismatch and shrinkage effects are pre-compensated by optimizing the recording setup of HOE lenses, so that the Bragg condition of each local grating is satisfied. In order to realize the practical implementations of recording setup, complicated wavefronts to be required for the wavelength and shrinkage compensation are approximated into spherical waves. The simulation results using the volume hologram models of OpticStudio verify that the undesirable focal shift and color breakup problems in the HOE lens due to the wavelength mismatch are compensated. Displaying experiments using a full-color HOE lens with the field of view of 30° are presented, where the maximum wavelength mismatch between the recording and displaying process is 17 nm.
The representation of three-dimensional volumetric pixels, voxels, is an important issue for the near-to-eye displays (NEDs) to solve the vergence-accommodation conflict problem. Although the holographic waveguides using holographic optical element (HOE) couplers are promising technologies for NEDs with the ultra-thin structure and high transparency, most of them have presented only a single and fixed depth plane. In this paper, we analyze the imaging characteristics of holographic waveguides, particularly to represent the arbitrary voxels and investigate the voxel duplication problem arising from the non-collimated light from the voxels. In order to prevent the image crosstalk arising from the voxel duplication, we propose an adjustment method for the emission angle profile of voxels by using the integral imaging technique. In the proposed method, the sub-regions of elemental images, which correspond to the duplicated voxels, are masked in order to optimize the emission angle of integrated voxels. In the experimental verification, a see-through integral imaging system, based on the organic light-emitting diode display and a holographic waveguide with the thickness of 5 mm, was constructed. The fabricated HOE in the waveguide showed high diffraction efficiency of 72.8 %, 76.6%, and 72.5 % for 460 nm, 532 nm, and 640 nm lasers, respectively. By applying the masked elemental images, the proposed method resulted in a reduced crosstalk in the observed voxels by 2.35 times. The full-color experimental results of see-through holographic waveguide with integral imaging are provided, whereby the observed 3D images are presented clearly without the ghost images due to the voxel duplication problem.
A Controller Area Network (CAN) is a serial communication protocol that is highly reliable and efficient in many aspects, such as wiring cost and space, system flexibility, and network maintenance. Therefore, it is chosen for the communication protocol between a single chip controller based on Field Programmable Gate Array (FPGA) and peripheral devices. In this paper, the design and implementation of CAN IP, which is written in VHSIC Hardware Description Language (VHDL), is presented. The implemented CAN IP is based on the CAN 2.0A specification. The CAN IP consists of three processes: clock generator, bit timing, and bit streaming. The clock generator process generates a time quantum clock. The bit timing process does synchronization, receives bits from the Rx port, and transmits bits to the Tx port. The bit streaming process generates a bit stream, which is made from a message received from a micro controller subsystem, receives a bit stream from the bit timing process, and handles errors depending on the state of the CAN node and CAN message fields. The implemented CAN IP is synthesized and downloaded into SmartFusion FPGA. Simulations using ModelSim and chip test results show that the implemented CAN IP conforms to the CAN 2.0A specification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.