No abstract
Rice is the principal food for over half of the population of the world. With its genome size of 430 megabase pairs (Mb), the cultivated rice species Oryza sativa is a model plant for genome research. Here we report the sequence analysis of chromosome 4 of O. sativa, one of the first two rice chromosomes to be sequenced completely. The finished sequence spans 34.6 Mb and represents 97.3% of the chromosome. In addition, we report the longest known sequence for a plant centromere, a completely sequenced contig of 1.16 Mb corresponding to the centromeric region of chromosome 4. We predict 4,658 protein coding genes and 70 transfer RNA genes. A total of 1,681 predicted genes match available unique rice expressed sequence tags. Transposable elements have a pronounced bias towards the euchromatic regions, indicating a close correlation of their distributions to genes along the chromosome. Comparative genome analysis between cultivated rice subspecies shows that there is an overall syntenic relationship between the chromosomes and divergence at the level of single-nucleotide polymorphisms and insertions and deletions. By contrast, there is little conservation in gene order between rice and Arabidopsis.
Alternative splicing is an important regulatory mechanism of mammalian gene expression. The alternative splicing database (ASD) consortium is systematically collecting and annotating data on alternative splicing. We present the continuation and upgrade of the ASD [T. A. Thanaraj, S. Stamm, F. Clark, J. J. Riethoven, V. Le Texier, J. Muilu (2004) Nucleic Acids Res. 32, D64–D69] that consists of computationally and manually generated data. Its largest parts are AltSplice, a value-added database of computationally delineated alternative splicing events. Its data include alternatively spliced introns/exons, events, isoform splicing patterns and isoform peptide sequences. AltSplice data are generated by examining gene-transcript alignments. The data are annotated for various biological features including splicing signals, expression states, (SNP)-mediated splicing and cross-species conservation. AEdb forms the manually curated component of ASD. It is a literature-based data set containing sequence and properties of alternatively spliced exons, functional enumeration of observed splicing events, characterization of observed splicing regulatory elements, and a collection of experimentally clarified minigene constructs. ASD includes a workbench, which is an analysis tool that enables users to carry out splicing related analysis such as characterization of introns for various splicing signals, identification of splicing regulatory elements on a given RNA sequence, prediction of putative exons and prediction of putative translation start codons. The different ASD modules are integrated and can be accessed through user-friendly interfaces and visualization tools. ASD data has been integrated with Ensembl genome annotation project as a Distributed Annotation System (DAS) resource and can be viewed on Ensembl genome browser. The ASD resource is presented at ().
Pathological inclusions containing fibrillar aggregates of hyperphosphorylated tau protein are a characteristic feature in tauopathies, which include Alzheimer's disease (AD). Tau is a microtubule-associated protein whose transcript undergoes alternative splicing in the brain. Exon 10 encodes one of four microtubule-binding repeats. Exon 10 inclusion gives rise to tau protein isoforms containing four microtubule-binding repeats (4R) whereas exclusion leads to isoforms containing only three repeats (3R). The ratio between 3R and 4R isoforms is tightly controlled via alternative splicing in the human adult nervous system and distortion of this balance results in neurodegeneration. Previous studies showed that several splicing regulators, among them hTRA2-beta1 and CLK2, regulate exon 10 alternative splicing. Like most splicing factors, htra2-beta and clk2 pre-mRNAs are regulated by alternative splicing. Here, we investigated whether human postmortem brain tissue of AD patients reveal differences in alternative splicing patterns of the tau, htra2-beta, presenilin 2 and clk2 genes when compared with age-matched controls. We found that the splicing patterns of all four genes are altered in affected brain areas of sporadic AD patients. In these affected areas, the amount of mRNAs of tau isoforms including exon 10, the htra2-beta1 isoform and an inactive form of clk2 are significantly increased. These findings suggest that a misregulation of alternative splicing seems to contribute to sporadic AD.
The human CD44 gene undergoes extensive alternative splicing of multiple variable exons positioned in a cassette in the middle of the gene. Expression of alternative exons is often restricted to certain tissues and could be associated with tumor progression and metastasis of several human malignancies, including breast cancer. Exon v4 contains multiple copies of a C/A-rich exon enhancer sequence required for optimal inclusion of the exon and binding to the nucleic acid-binding proteins YB-1 and human Tra2-B1. Here, we show that hTra2-B1, a member of the extended family of serine/arginine-rich (SR) splicing factors, enhances the in vivo inclusion of CD44 exons v4 and v5. It increased inclusion of exons v4 and v5 and acted synergistically with YB-1. Activation required the C/A-rich enhancer within exon v4. Several other SR proteins had none or only a slight effect on CD44 exon inclusion. In contrast, SC35 inhibited exon usage and antagonized the effects of Tra2 or YB-1. In a matched pair analysis of human breast cancers and their corresponding nonpathologic tissue controls, we found a significant induction of Tra2-B1 in invasive breast cancer, both on the RNA and protein levels. Together with our functional data, these results suggest an important role for Tra2-B1 in breast cancer. Induction of this splicing factor might be responsible for splicing of CD44 isoforms associated with tumor progression and metastasis. (Cancer Res 2006; 66(9): 4774-80)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.