The dietary triacylglycerol (TAG) gets absorbed and accumulated in the body through the monoacylglycerol (MAG) pathway, which plays a major role in obesity and related disorders. The main enzyme of this pathway, monoacylglycerol acyltransferase 2 (MGAT2), is considered as a potential target for developing antiobesity compounds. Hence, there is a need for in vitro cell-based assays for screening the potential leads for MGAT2 inhibitors. Because of synthetic inhibitor's side effects, there is an increased interest in natural extracts as potential leads. Hence, we have optimized a 2-MAG-induced TAG accumulation inhibitory cell-based assay to screen natural extracts using the HIEC-6 cell line. A concentration-dependent TAG accumulation was observed when the HIEC-6 cells were fed with exogenous 2-MAG. The TAG accumulation was confirmed by in situ BODIPY staining and was quantified. However, no TAG accumulation was seen when the cells were fed with exogenous DAG or TAG, suggesting MGAT2mediated MAG uptake and its conversion to TAG. We demonstrated the utility of this assay by screening five different plant-based aqueous extracts. These extracts showed various inhibition levels (25% to 30%) of 2-MAG-induced TAG accumulation in the HIEC-6. The MGAT2 inhibitory potential of these extracts was confirmed by an in vitro MGAT2 assay. This cell-based assay adds a new methodology for screening, developing, and evaluating MGAT2 inhibitors for addressing obesity and related disorders.
Dietary bioactive compounds from natural sources (e.g., herbal medicines, foods) are known to potentially suppress acute or chronic inflammation and promote the effectiveness of treatment to reduce the harmful effects of gastritis alone or in combination. In this regard, we have characterized four Cameroonian spice extracts, namely Aframomum citratum, Dichrostachys glomerata, Tetrapleura tetraptera, and Xylopia parviflora through reverse phase-high-performance liquid chromatography (RP-HPLC), ultra-performance liquid chromatography-electrospray ionization high-resolution mass spectrometry (UPLC-ESI-HRMS/MS), and Fourier transform infrared spectroscopic (FTIR) analyses and investigated their antioxidant and synergistic anti-inflammatory activities in human gastric adenocarcinoma (AGS) and gastric epithelial (GES-1) cells. The extracts showed a high amount of total phenolic (TPC: 150–290 mg gallic acid equivalents (GAE)/g of extract) and flavonoid content (TFC: 35–115 mg catechin equivalents (CE)/g of extract) with antioxidant properties in a cell-free system (1,1-Diphenyl-2-picryl-hydrazyl (DPPH) half maximal inhibitory concentration (IC50s) ≤ 45 µg/mL; 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) half maximal inhibitory concentration (IC50s) ≤ 29 µg/mL. The extracts in combination (MIX) exert a synergistic beneficial effect (combination index (CIs) < 1 and dose reduction index (DRIs) > 1) on inflammatory markers (interleukin (IL)-8 and -6 release, and nuclear factor kappa B (NF-κB) driven transcription) in human gastric epithelial cells, which may result from the presence of phenolic compounds (phenolic acids, flavonoids) or other compounds (protein, lipid, aromatic, and polysaccharide compounds) tentatively identified in the extracts. The general findings of the present study provide supporting evidence on the chemical composition of four Cameroonian dietary plants and their significant synergistic inhibitory activities on inflammatory markers of gastric epithelial cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.