Periodically visiting soil monitoring sites, i.e., sampling and analysis, is recognized as one of the most important ways to monitor soil quality. However, reconciling the monitoring costs with monitoring precision of the soil monitoring network (SMN) is a key technical problem to be solved. A statistically sound method, which depends on the spatial variation in monitoring indicators, was adopted to determine the number of monitoring sites and the monitoring interval as well as their ability to detect a particular change under an economically feasible scenario. The spatial variation in soil monitoring indicators was inquired from the “Multi-Purpose Regional Geochemical Survey in Zhejiang Province (MRGSZ)” project. Based on the data for soil pH and concentration of potentially toxic elements, the number of monitoring sites and the monitoring intervals that might be used for soil monitoring were determined with the administrative region as the monitoring unit. The results showed that there was great spatial variation in the MRGSZ region, which resulted in discrepancies in the minimum detectable changes (MDCs), monitoring site numbers, and temporal monitoring intervals for revisiting. Our research proposes a number of monitoring sites (nr) that could reconcile the monitoring costs, practicability, and monitoring precision; thus, it was recommended for the design of SMNs. Under nr, the MDC values of each monitoring indicator were acceptable for all administrative regions, and the temporal monitoring intervals were practical with variations of 6.7 to 14.8 years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.