The aim of this in vitro study was to evaluate the effect of sintering procedures on marginal discrepancies of fixed partial metal frameworks fabricated using different sintering-based computer-aided design and computer/aided manufacturing (CAD/CAM) techniques. MATERIALS AND METHODS. Forty resin die models of prepared premolar and molar abutment teeth were fabricated using a three-dimensional (3D) printer and divided into four groups (n = 10) according to the fabrication method of metal frameworks used: HM (via hard milling), SM (via soft metal milling), L25 (via direct metal laser melting [DMLM] with a 25 µm layer thickness), and L50 (via direct DMLM with a 50 µm layer thickness). After the metal frameworks were fabricated and cemented, five vertical marginal discrepancy measurements were recorded in each site (i.e., buccal, facing the pontic, lingual, and facing away from the pontic) of both abutment teeth under a stereomicroscope (×40). Data were statistically analyzed at a significance level of 0.05. RESULTS. No statistically significant differences (P>.05) were found among the four axial sites of metal frameworks fabricated by sintering-based CAD/CAM techniques. The HM and L25 groups showed significantly (P<.001) lower marginal discrepancy values than the SM and L50 groups. CONCLUSION. Marginal discrepancy in the sites facing the pontic was not influenced by the type of sintering procedure. All fabrication methods exhibited clinically acceptable results in terms of marginal discrepancies.
Increasing aesthetic preferences and technological changes in dentistry have been planned towards time, resulting in predictable, more aesthetic and more functional results. Firstly, the development of digital dentistry, especially the CAD/CAM systems, following these developments, the ability to make smile designs with the effect of digitalization in anterior restorations led to the emergence of reliable and more guaranteed restorations for both the patient, dentist and dental technician. This review summarizes the information and offers suggestions with features to be considered in digital smile design and digital smile design softwares.
For decades, conventional complete dentures (CD) have been a promising treatment for edentulous patients. The introduction of digital technology in CD fabrication streamlines and simplifies the treatment process and offers new and specific applications for the completely edentulous patients. Computer-aided design/computer-assisted manufactured (CAD/CAM) CD protocols can improve efficiency and offer specific applications in specific situations to improve patient care, satisfaction, and convenience. The aim of this review is to assess and evaluate the clinical outcomes and complication of CAD/CAM fabricated CD systems and to provide information about currently available systems for dental practitioners.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.