An essential oil, distilled from the leaves of the Andean species Gynoxys rugulosa Muschl., is described in the present study for the first time. The chemical composition was qualitatively and quantitatively determined by GC–MS and GC–FID, respectively. On the one hand, the qualitative composition was obtained by comparing the mass spectrum and the linear retention index of each component with data from literature. On the other hand, the quantitative composition was determined by calculating the relative response factor of each constituent, according to its combustion enthalpy. Both analyses were carried out with two orthogonal columns of nonpolar and polar stationary phases. A total of 112 compounds were detected and quantified with at least one column, corresponding to 87.3–93.0% of the whole oil mass. Among the 112 detected components, 103 were identified. The main constituents were α-pinene (5.3–6.0%), (E)-β-caryophyllene (2.4–2.8%), α-humulene (3.0–3.2%), germacrene D (4.9–6.5%), δ-cadinene (2.2–2.3%), caryophyllene oxide (1.6–2.2%), α-cadinol (3.8–4.4%), 1-nonadecanol (1.7–1.9%), 1-eicosanol (0.9–1.2%), n-tricosane (3.3–3.4%), 1-heneicosanol (4.5–5.8%), n-pentacosane (5.8–7.1%), 1-tricosanol (4.0–4.5%), and n-heptacosane (3.0–3.5%). Furthermore, an enantioselective analysis was carried out on the essential oil, by means of two cyclodextrin-based capillary columns. The enantiomers of α-pinene, β-pinene, sabinene, α-phellandrene, β-phellandrene, linalool, α-copaene, terpinen-4-ol, α-terpineol, and germacrene D were detected, and the respective enantiomeric excess was calculated.
Cocoa beans (Theobroma cacao L.) are an important source of polyphenols. Nevertheless, the content of these compounds is influenced by post-harvest processes. In this sense, the concentration of polyphenols can decrease by more than 50% during drying. In this study, the process of procyanidins extraction was optimized and the stability of catechins, procyanidins, and theobromine to different drying temperatures was evaluated. First, the effectiveness of methanol, ethanol, acetone, and water as extract solvents was determined. A Box–Behnken design and response surface methodology were used to optimize the Microwave-Assisted Extraction (MAE) process. The ratios of methanol-water, time, and temperature of extraction were selected as independent variables, whereas the concentration of procyanidins was used as a response variable. Concerning the drying, the samples were dried using five temperatures, and a sample freeze-dried was used as a control. The quantitative analyses were carried out by HPLC-DAD-ESI-IT-MS. The optimal MAE conditions were 67 °C, 56 min, and 73% methanol. Regarding the drying, the maximum contents of procyanidins were obtained at 40 °C. To our knowledge, this is the first time that the stability of dimers, trimers, and tetramers of procyanidins on drying temperature was evaluated. In conclusion, drying at 40 °C presented better results than the freeze-drying method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.