Summary Dispersal is essential for species to survive the threats of habitat destruction and climate change. Combining descriptions of dispersal ability with those of landscape structure, the concept of functional connectivity has been popular for understanding and predicting species’ spatial responses to environmental change. Following recent advances, the functional connectivity concept is now able to move beyond landscape structure to consider more explicitly how other external factors such as climate and resources affect species movement. We argue that these factors, in addition to a consideration of the complete dispersal process, are critical for an accurate understanding of functional connectivity for plant species in response to environmental change. We use recent advances in dispersal, landscape and molecular ecology to describe how a range of external factors can influence effective dispersal in plant species, and how the resulting functional connectivity can be assessed. Synthesis. We define plant functional connectivity as the effective dispersal of propagules or pollen among habitat patches in a landscape. Plant functional connectivity is determined by a combination of landscape structure, interactions between plant, environment and dispersal vectors, and the successful establishment of individuals. We hope that this consolidation of recent research will help focus future connectivity research and conservation.
Directed dispersal by animal vectors has been found to have large effects on the structure and dynamics of plant populations adapted to frugivory. Yet, empirical data are lacking on the potential of directed dispersal by rotational grazing of domestic animals to mediate gene flow across the landscape. Here, we investigated the potential effect of large-flock shepherding on landscape-scale genetic structure in the calcareous grassland plant Dianthus carthusianorum, whose seeds lack morphological adaptations to dispersal to animals or wind. We found a significant pattern of genetic structure differentiating population within grazed patches of three nonoverlapping shepherding systems and populations of ungrazed patches. Among ungrazed patches, we found a strong and significant effect of isolation by distance (r = 0.56). In contrast, genetic distance between grazed patches within the same herding system was unrelated to geographical distance but significantly related to distance along shepherding routes (r = 0.44). This latter effect of connectivity along shepherding routes suggests that gene flow is spatially restricted occurring mostly between adjacent populations. While this study used nuclear markers that integrate gene flow by pollen and seed, the significant difference in the genetic structure between ungrazed patches and patches connected by large-flock shepherding indicates the potential of directed seed dispersal by sheep across the landscape.
Response to habitat fragmentation may not be generalized among species, in particular for plant communities with a variety of dispersal traits. Calcareous grasslands are one of the most species-rich habitats in Central Europe, but abandonment of traditional management has caused a dramatic decline of calcareous grassland species. In the Southern Franconian Alb in Germany, reintroduction of rotational shepherding in previously abandoned grasslands has restored species diversity, and it has been suggested that sheep support seed dispersal among grasslands. We tested the effect of rotational shepherding on demographic and genetic connectivity of calcareous grassland specialist plants and whether the response of plant populations to shepherding was limited to species dispersed by animals (zoochory). Specifically, we tested competing dispersal models and source and focal patch properties to explain landscape connectivity with patch-occupancy data of 31 species. We fitted the same connectivity models to patch occupancy and nuclear microsatellite data for the herb Dianthus carthusianorum (Carthusian pink). For 27 species, patch connectivity was explained by dispersal by rotational shepherding regardless of adaptations to zoochory, whereas population size (16% species) and patch area (0% species) of source patches were not important predictors of patch occupancy in most species. [Correction made after online publication, February 25, 2014: Population size and patch area percentages were mistakenly inverted, and have now been fixed.] Microsite diversity of focal patches significantly increased the model variance explained by patch occupancy in 90% of the species. For D. carthusianorum, patch connectivity through rotational shepherding explained both patch occupancy and population genetic diversity. Our results suggest shepherding provides dispersal for multiple plant species regardless of their dispersal adaptations and thus offers a useful approach to restore plant diversity in fragmented calcareous grasslands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.