Analysis of mathematical models designed for COVID-19 results in several important outputs that may help stakeholders to answer disease control policy questions. A mathematical model for COVID-19 is developed and equilibrium points are shown to be locally and globally stable. Sensitivity analysis of the basic reproductive number (R
0
) showed that the rate of transmission from asymptomatically infected cases to susceptible cases is the most sensitive parameter. Numerical simulation indicated that a 10% reduction of R
0
by reducing the most sensitive parameter results in a 24% reduction of the size of exposed cases. Optimal control analysis revealed that the optimal practice of combining all three (public health education, personal protective measure, and treating COVID-19 patients) intervention strategies or combination of any two of them leads to the required mitigation of transmission of the pandemic.
This article presents triple Laplace transform coupled with iterative method to obtain the exact solution of two-dimensional nonlinear sine-Gordon equation (NLSGE) subject to the appropriate initial and boundary conditions. The noise term in this equation is vanished by successive iterative method. The proposed technique has the advantage of producing exact solution, and it is easily applied to the given problems analytically. Four test problems from mathematical physics are taken to show the accuracy, convergence, and the efficiency of the proposed method. Furthermore, the results indicate that the introduced method is promising for solving other type systems of NLPDEs.
In this paper, the reduced differential transform method (RDTM) is successfully implemented for solving two-dimensional nonlinear sine-Gordon equations subject to appropriate initial conditions. Some lemmas which help us to solve the governing problem using the proposed method are proved. This scheme has the advantage of generating an analytical approximate solution or exact solution in a convergent power series form with conveniently determinable components. The method considers the use of the appropriate initial conditions and finds the solution without any discretization, transformation, or restrictive assumptions. The accuracy and efficiency of the proposed method are demonstrated by four of our test problems, and solution behavior of the test problems is presented using tables and graphs. Further, the numerical results are found to be in a good agreement with the exact solutions and the numerical solutions that are available in literature. We have showed the convergence of the proposed method. Also, the obtained results reveal that the introduced method is promising for solving other types of nonlinear partial differential equations (NLPDEs) in the fields of science and engineering.
In this paper, the reduced differential transform method (RDTM) is successfully implemented for solving two-dimensional nonlinear Klein–Gordon equations (NLKGEs) with quadratic and cubic nonlinearities subject to appropriate initial conditions. The proposed technique has the advantage of producing an analytical approximation in a convergent power series form with a reduced number of calculable terms. Two test examples from mathematical physics are discussed to illustrate the validity and efficiency of the method. In addition, numerical solutions of the test examples are presented graphically to show the reliability and accuracy of the method. Also, the results indicate that the introduced method is promising for solving other type systems of NLPDEs.
In this study, the fractional reduced differential transform method (FRDTM) is employed to solve three-dimensional fourth-order time-fractional parabolic partial differential equations with variable coefficients. The fractional derivative used in this study is in the Caputo sense. A few important lemmas which are essential to solve the problems using the proposed method are proved. The novelty of this method is that it uses appropriate initial conditions and finds the solution to the problems without any discretization, linearization, perturbation, or any restrictive assumptions. Two numerical examples are considered in order to validate the efficiency and reliability of the method. Furthermore, the FRDTM solution when α = 1 is compared with other analytical methods available in the existing literature. Computational results are shown in tables and graphs. The obtained results revealed that the method is capable and simple to solve fractional partial differential equations. The software used for the calculations in this study is Mathematica 7.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.