Background: This American Thoracic Society, European Respiratory Society, Japanese Respiratory Society, and Asociaci on Latinoamericana de T orax guideline updates prior idiopathic pulmonary fibrosis (IPF) guidelines and addresses the progression of pulmonary fibrosis in patients with interstitial lung diseases (ILDs) other than IPF.Methods: A committee was composed of multidisciplinary experts in ILD, methodologists, and patient representatives. 1) Update of IPF: Radiological and histopathological criteria for IPF were updated by consensus. Questions about transbronchial lung cryobiopsy, genomic classifier testing, antacid medication, and antireflux surgery were informed by systematic reviews and answered with evidence-based recommendations using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach.2) Progressive pulmonary fibrosis (PPF): PPF was defined, and then radiological and physiological criteria for PPF were determined by consensus. Questions about pirfenidone and nintedanib were informed by systematic reviews and answered with evidence-based recommendations using the GRADE approach.Results: 1) Update of IPF: A conditional recommendation was made to regard transbronchial lung cryobiopsy as an acceptable alternative to surgical lung biopsy in centers with appropriate expertise. No recommendation was made for or against genomic classifier testing. Conditional recommendations were made against antacid medication and antireflux surgery for the treatment of IPF. 2) PPF: PPF was defined as at least two of three criteria (worsening symptoms, radiological progression, and physiological progression) occurring within the past year with no alternative explanation in a patient with an ILD other than IPF. A conditional recommendation was made for nintedanib, and additional research into pirfenidone was recommended.Conclusions: The conditional recommendations in this guideline are intended to provide the basis for rational, informed decisions by clinicians.
Improved diagnostic sensitivity of bronchsocopy for the investigation of peripheral pulmonary lesions (PPLs) with the use of radial probe endobroncial ultrasound (EBUS) has been reported, although diagnostic performance varies considerably.A systematic review of published literature evaluating radial probe EBUS accuracy was performed to determine point sensitivity and specificity, and to construct a summary receiveroperating characteristic curve. Sub-group analysis and linear regression was used to identify possible sources of study heterogeneity.16 studies with 1,420 patients fulfilled inclusion criteria. Significant inter-study variation in EBUS method was noted. EBUS had point specificity of 1.00 (95% CI 0.99-1.00) and point sensitivity of 0.73 (95% CI 0.70-0.76) for the detection of lung cancer, with a positive likelihood ratio of 26.84 (12.60-57.20) and a negative likelihood ratio of 0.28 (0.23-0.36). Significant interstudy heterogeneity for sensitivity was observed, with prevalence of malignancy, lesion size and reference standard used being possible sources.EBUS is a safe and relatively accurate tool in the investigation of PPLs. Diagnostic sensitivity of EBUS may be influenced by the prevalence of malignancy in the patient cohort being examined and lesion size. Further methodologically rigorous studies on well-defined patient populations are required to evaluate the generalisability of our results.
COPD and lung cancer are major lung diseases affecting millions worldwide. Both diseases have links to cigarette smoking, and exert a considerable societal burden. People suffering from COPD are at a higher risk of developing lung cancer than those without COPD and are more susceptible to poor outcomes after diagnosis and treatment. Lung cancer and COPD are closely associated, possibly sharing common traits such as an underlying genetic predisposition, epithelial and endothelial cell plasticity, dysfunctional inflammatory mechanisms including the deposition of excessive extracellular matrix, angiogenesis, susceptibility to DNA damage and cellular mutagenesis. In fact, COPD could be the driving factor for lung cancer, providing a conducive environment that propagates its evolution. In the early stages of smoking, body defences provide a combative immune/oxidative response and DNA repair mechanisms are likely to subdue these changes to a certain extent; however, in patients with COPD with lung cancer the consequences could be devastating, potentially contributing to slower post-operative recovery after lung resection and increased resistance to radiotherapy and chemotherapy. Vital to the development of new-targeted therapies is an in-depth understanding of various molecular mechanisms that are associated with both pathologies. In this comprehensive review, we shall provide a detailed overview of possible underlying factors that link COPD and lung cancer and current therapeutic advances from both human and pre-clinical animal models that can effectively mitigate this unholy relationship. Running head-COPD and lung cancer: understanding and treatments
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.