The rapid development of communication and computer has brought many application scenarios to the fingerprint identification technology of communication equipment. The technology is of great significance in electronic countermeasures, wireless network security, and other fields and has been widely studied in recent years. The fingerprint identification technology of communication equipment is mainly based on the fingerprint characteristics represented on the transmitted signals of the equipment, which are different from other devices, and the connection between the characteristics and the hardware equipment is established, so as to realize the purpose of identifying the communication equipment. In this paper, the author studies the key technologies related to fingerprint recognition of communication equipment, including signal acquisition, signal feature extraction, and classifier design, and transient signal recognition equipment. In this paper, the integrated learning and deep learning based on fingerprint recognition are taken as the main research contents of communication equipment, and the fingerprint recognition scheme of communication equipment is given; the proposed scheme is verified by the measured data. Aiming at the transient signal of communication equipment, an algorithm using the short-term periodicity of signal is presented. The feature extraction of steady-state signal is realized. The autoencoder feature and four kinds of integral bispectrum feature are analyzed and visualized. Research on communication equipment individual recognition technology is based on ensemble learning. An individual recognition scheme for communication devices based on Extreme Gradient Boosting (XGBoost) classification model is studied. The Gradient Boosting Decision Tree (GBDT) model with different parameters was used as the primary learner of stacking classifier. The steady-state signal recognition of mobile phones based on deep learning is studied. The results show that the stacking recognition rate improved by about 2% compared with GBDT using multiple GBDT models with different parameters as the primary learner.
To gain a more comprehensive and systematic understanding of the impact of government assistance to poor households on poverty reduction targets, a targeted poverty alleviation information statistics and analysis integrated with big data mining algorithm is proposed. Combined with the big data knowledge of the new era, according to the machine learning (ML) pipeline module in spark, a big data computing framework, combined with known data mining algorithms, massive sample data are used to replace random stratified sampling data for modeling and analysis, and random forest model, logistic model, and newly proposed waterfall model are constructed for poor households. Finally, through the comparative evaluation of several poor household identification models, the results show that when 100 real data test the accuracy of the three poor household models, the random forest model and logistic model are slightly reduced, which are 82% and 72%, respectively, but the waterfall model is basically unchanged, which is 83%, and the three models have little change. The new waterfall design proposed in this article has the advantage of a high percentage of sample reuse and can effectively prevent overfitting, and there is no need for massive data. It is a stable and reliable new model. The combination of targeted poverty reduction algorithms and big information technology and mining data can get the most common causes more accurate and convincing results. The right rib trunk and rib are often separated from the common cause because of the population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.