Functional nanoscale coordination polymers are receiving growing scientific interest because of their potential applications in many domains. In this paper, we demonstrated that a nanofibrous networked metal-organic gel (G1-MNPs) was formed by simply mixing 4,4',4''-(1,3,5-triazine-2,4,6-triyl)tris(N-(pyridin-3-ylmethyl)benzamide) (L) and Pd(COD)(NO(3))(2) in CHCl(3)-MeOH with a Pd/L molar ratio of 1:1 in the presence of magnetite nanoparticle (MNPs). The self-assembly behavior of nanofibers was not significantly effected by the introduction of magnetite nanoparticles. The xerogel of G1-MNPs was superparamagnetic and showed catalytic activity in Suzuki-Miyaura C-C coupling reactions. The Pd(II) xerogel could be magnetically isolated and recycled with a permanent magnet. It represents a novel strategy to introduce nanoparticles into functional coordination polymers for multifunctional materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.