Cancer pain may be the consequence of physical nerve compression by a growing tumor. We employed a murine model to study whether gabapentin was able to regulate tumor growth, in addition to controlling hyperalgesic symptoms. A fluorescent melanoma cell line (B16–BL6/Zs green) was inoculated into the proximity of the sciatic nerve in male C57BL/6 mice. The tumor gradually compressed the nerve, causing hypersensitivity. Tumor growth was characterized via in vivo imaging techniques. Every other day, gabapentin (100 mg/Kg) or saline was IP administered to each animal. In the therapeutic protocol, gabapentin was administered once the tumor had induced increased nociception. In the preventive protocol, gabapentin was administered before the appearance of the positive signs. Additionally, in vitro experiments were performed to determine gabapentin’s effects on cell-line proliferation, the secretion of the chemokine CCL2, and calcium influx. In the therapeutically treated animals, baseline responses to noxious stimuli were recovered, and tumors were significantly reduced. Similarly, gabapentin reduced tumor growth during the preventive treatment, but a relapse was noticed when the administration stopped. Gabapentin also inhibited cell proliferation, the secretion of CCL2, and calcium influx. These results suggest that gabapentin might represent a multivalent strategy to control cancer-associated events in painful tumors.
ConvitVax is a personalized vaccine for the treatment of breast cancer, composed of autologous tumor cells, bacillus Calmette-Guérin (BCG) and low concentrations of formalin. Previous pre-clinical studies show that this therapy induces a potent activation of the immune system and achieves an effective response against tumor cells, reducing the size of the tumor and decreasing the percentage of immunosuppressive cells. In the present study, we evaluate the toxicity of ConvitVax in healthy BALB/c mice to determine potential adverse effects related to the vaccine and each of its components. We used standard guidelines for pain, discomfort and distress recognition, continuously evaluated the site of the injection, and completed blood and urine clinical tests. Endpoint necropsy was performed, measuring the weight of organs and processing liver, kidney, thymus and lung for histological examination. Results show that the vaccine in its therapeutic dose, at 3 times its therapeutic concentration, and its individual components did not cause death or behavioral or biological changes, including any abnormalities in whole-body or organ weights, and tissue damage. These results support the safety of ConvitVax with minimal to no side-effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.