Pembelajaran siswa di sekolah mengalami perubahan sejak pandemi Covid-19. Pembelajaran siswa pada kondisi normal dilaksanakan secara tatap muka berubah menjadi pembelajaran Online atau Dalam Jaringan (Daring). Penelitian dilakukan untuk memprediksi hasil belajar siswa pada masa pandemi COVID-19 sehingga hasil penelitian bisa digunakan untuk menjadi acuan dalam pengambilan kebijakan di sekolah. Metode C4.5 digunakan pada penelitian untuk mengklasifikasi data nilai siswa kelas XII Jurusan Multimedia di SMKN 2 Padang Panjang dan hasil klasifikasi dapat memprediksi hasil belajar siswa pada masa pandemi. Data nilai siswa yang diolah diambil dari 1 (satu) mata pelajaran sebagai sampel data penelitian. Nilai hasil belajar siswa dianalisa menggunakan Metode C4.5 untuk mendapatkan pengetahuan baru dari data nilai hasil belajar siswa yang dilaksanakan pada masa pandemi COVID-19. Data yang dianalisa terdiri dari atribut absensi, tugas, Ulangan Harian (UH) dan nilai ujian yang mempengaruhi kriteria keputusan hasil belajar siswa pada pelajaran yang dilaksanakan secara daring. Kriteria keputusan hasil belajar terdiri dari “Memuaskan” dan “Kurang Memuaskan” yang mengacu kepada Kriteria Ketuntasan Minimal (KKM). Pengujian yang dilakukan terhadap data training hasil belajar menunjukkan bahwa nilai Ulangan Harian (UH) merupakan atribut yang paling mempengaruhi terhadap keputusan. Implementasi hasil menggunakan Software RapidMiner Studio 9.2.0 dan menghasilkan akurasi sebesar 83,33% dari pengujian data testing dengan rule-rule hasil analisa data training. Hasil pengujian klasifikasi metode C4.5 pada penelitian ini bisa digunakan untuk memprediksi hasil belajar siswa. Hasil pengujian dengan akurasi sebesar 83,33% sudah dapat direkomendasikan untuk membantu pihak sekolah dalam membuat kebijakan.
Student learning in schools has changed since the Covid-19 pandemic. Student learning in normal conditions is carried out face-to-face and turns into online or online learning. The research was conducted to predict student learning outcomes during the COVID-19 pandemic so that the results of this study can be used as a reference in policymaking in schools. The C4.5 method was used in the study to classify the data for class XII of the Multimedia Department at SMKN 2 Padang Panjang and the classification results could predict student learning outcomes during the pandemic. Processed student value data were taken from 1 (one) subject as the research data sample. Analysis of the value of student learning outcomes using the C4.5 Method to obtain new knowledge from student learning outcomes data carried out during the COVID-19 pandemic. The data analyzed consisted of attributes of attendance, assignments, daily tests, and test scores which influenced the decision criteria for student learning outcomes in online learning. The learning outcome decision criteria consist of "Satisfactory" and "Not Satisfactory" which refer to the Minimum Completion Criteria. Tests conducted on the training data of learning outcomes show that the value of the Daily Test is the most influential attribute in decision making. Implementation of the results using the RapidMiner Studio 9.2.0 software and produces an accuracy of 83.33% of the test data testing with the rules of data analysis training results. The results of the C4.5 classification testing method in this study can be used to predict student learning outcomes. The test results with an accuracy of 83.33% can be recommended to help schools in making policies
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.