In HCC, inactivation of tumor suppressor genes plays a significant role in carcinogenesis. Apart from deletions and mutations, growing evidence has indicated that epigenetic alterations including aberrant promoter methylation and histone deacetylation are also implicated in inactivation of tumor suppressor genes. The goal of this study was to identify epigenetically silenced candidate tumor suppressor genes in human HCC by comparing the changes in oligonucleotide microarray gene expression profiles in HCC cell lines upon pharmacological treatment with the demethylating agent 5-Aza-2 -deoxycytidine (5-AzadC). By analyzing the gene expression profiles, we selected tissue factor pathway inhibitor-2 (TFPI-2), a Kunitz-type serine protease inhibitor, for validation and further characterization. Our results showed that TFPI-2 was frequently silenced in human HCC and HCC cell lines. TFPI-2 was significantly underexpressed in approximately 90% of primary HCCs when compared with their corresponding nontumorous livers. TFPI-2 promoter methylation was detected in 80% of HCC cell lines and 47% of human HCCs and was accompanied by reduced TFPI-2 messenger RNA expression. In addition, TFPI-2 expression in HCC cell lines can be robustly restored by combined treatment with 5-Aza-dC and histone deacetylase inhibitor trichostatin A. These findings indicate that TFPI-2 is frequently silenced in human HCC via epigenetic alterations, including promoter methylation and histone deacetylation. Moreover, ectopic overexpression of TFPI-2 significantly suppressed the proliferation and invasiveness of HCC cells. Conclusion: Our findings suggest that TFPI-2 is a candidate tumor suppressor gene in human HCC. (HEPATOLOGY 2007;45:1129-1138
DNA methylation and histone modifications are two major epigenetic events regulating gene expression and chromatin structure, and their alterations are linked to human carcinogenesis. DNA methylation plays an important role in tumor suppressor gene inactivation, and can be revised by DNA methylation inhibitors. The reversible nature of DNA methylation forms the basis of epigenetic cancer therapy. However, it has been reported that DNA re-methylation and gene re-silencing could occur after removal of demethylation treatment and this may significantly hamper the therapeutic value of DNA methylation inhibitors. In this study we have provided detailed evidence demonstrating that mammalian cells possess a bona fide DNA methylation recovery system. We have also shown that DNA methylation recovery was mediated by the major human DNA methyltransferase, DNMT1. In addition, we found that H3K9-tri-methylation and H3K27-tri-methylation were closely associated with this DNA methylation recovery. These persistent transcriptional repressive histone modifications may have a crucial role in regulating DNMT1-mediated DNA methylation recovery. Our findings may have important implications towards a better understanding of epigenetic regulation and future development of epigenetic therapeutic intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.