The coastal zone of Bangladesh is very heterogeneous in nature and has marvelous potential to create opportunities of national importance and contribute to GDP. Among the potentials-intensification of agriculture, aqua-culture and marine fishery, ship building industry, eco-tourism, deep sea port etc. are most significant. Unfortunately, the coastal zone of the country is disaster prone area. Poor communication, lack of education and health care facilities, prolonged absence of safe drinking water and inadequate cyclone shelters contribute and multiply the dimension of vulnerability. Furthermore, increasing population pressure increases the competition for limited resources. As a consequence, in order to unlock these potentials, existing and new interventions are required to serve in an integrated and inclusive way; calling for a distinct and integrated coastal development strategy. This study aims to investigate the issues of the western floodplain of the Ganges and propose some identical strategies and subsequent adaptation pathways to delineate the development roadmaps to decision makers and researches. Analyses have been conducted through GIS and RS technology, Dynamic Pathway Generator, Excel analysis and field investigation.
The transom stern offered some advantages over the traditional rounded cruiser stern reducing the resistance of a ship. This can only be achieved if the transom stern is carefully designed with suitable transom immersion ratio. In this study, the influence of different transom area immersion ratios on the resistance components was investigated for a semi-displacement hull and a full displacement hull. The base hull was based on NPL hull form and KCS hull form for a semi-displacement and full-displacement hull respectively. The transom immersion ratios for the NPL hull were varied at a ratio of 0.5, 0.7, 0.8 and 1.0. The resistance of each of the NPL hull form was simulated at Froude number 0.3 up to 0.6. The transom immersion ratios for the KCS hull were varied at a ratio of 0.05, 0.1, 0.15 and 0.3. The resistance of each of the KCS hull form was simulated at Froude number 0.195, 0.23, 0.26 and 0.28. The transoms of both hulls were modified or varied systematically to study the influence of the transom shape or immersion on the total and wave resistance components. The investigation was carried out using a CFD software named SHIPFLOW 6.3 based on RANSE solver. These results on the NPL hull shows that the larger the transom immersion, the higher the resistance will be for a semi-displacement vessel. The increased resistance is contributed by additional frictional and wave resistance components. The results for the KCS hull seems to contradict with the results obtained from the NPL hull. The larger and deeper transom for the case of KCS hull form sometimes can be beneficial at higher Froude number.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.