Here we examine the protein covalent structure of the vaccinia virus virion. Within two virion preparations, >88% of the theoretical vaccinia virus-encoded proteome was detected with high confidence, including the first detection of products from 27 open reading frames (ORFs) previously designated "predicted," "uncharacterized," "inferred," or "hypothetical" polypeptides containing as few as 39 amino acids (aa) and six proteins whose detection required nontryptic proteolysis. We also detected the expression of four short ORFs, each of which was located within an ORF ("ORF-within-ORF"), including one not previously recognized or known to be expressed. Using quantitative mass spectrometry (MS), between 58 and 74 proteins were determined to be packaged. A total of 63 host proteins were also identified as candidates for packaging. Evidence is provided that some portion of virion proteins are "nicked" via a combination of endoproteolysis and concerted exoproteolysis in a manner, and at sites, IMPORTANCEPoxviruses are among the most complex and irregular virions, about whose internal structure little is known. To better understand poxvirus virion structure, imaging should be supplemented with other tools. Here, we provide a deep study of the covalent structure of the vaccinia virus virion using the various tools of contemporary mass spectrometry. C ontemporary mass spectrometry (MS) instrumentation provides an avenue for proteome coverage with enormous breadth or depth, depending upon the complexity of the proteome. Typically, the power of the approach is exploited for breadth in the analysis of increasingly complex proteomes. Here, we have taken a relatively narrow proteome, that of a virus particle, and explored proteome depth, developing analytical approaches and tools as required.Sporadic information is available on the covalent (primary) molecular structure of the vaccinia virus virion. Around 75 proteins can be detected in two-dimensional (2D) gels of purified vaccinia virus virions (1). Three published MS studies provided early compendia of viral and host gene products present within vaccinia virus and human monkeypox virion preparations via MS (2-5). These studies built upon earlier, less comprehensive studies that employed a combination of MS and N-terminal sequencing (1, 6). Overlapping approaches in terms of instrumentation, preparation, and data analysis led to an overlapping set of detected gene products.In terms of covalent protein modifications, six vaccinia virus proteins can be labeled in vivo with myristate, five of which have been identified as L1R (7,8), G9R, A16L, and E7R (9), and A14L (10). All except A14L possess a glycine at position 2 in the protein.At least eight vaccinia virus-encoded proteins may be palmitoylated, as evidenced by the incorporation of 3 H-labeled palmitate in culture (11). These proteins include wrapped virus (WV)-specific protein p37 (F13L) (7,(12)(13)(14) and products of open reading frames (ORFs) A33R (15), B5R (16), F13L (17), the A22R Holliday resolvase (11), A...
The mitochondrial and chloroplast mRNAs of the majority of land plants are modified through cytidine to uridine (C-to-U) RNA editing. Previously, forward and reverse genetic screens demonstrated a requirement for pentatricopeptide repeat (PPR) proteins for RNA editing. Moreover, chloroplast editing factors OZ1, RIP2, RIP9 and ORRM1 were identified in co-immunoprecipitation (co-IP) experiments, albeit the minimal complex sufficient for editing activity was never deduced. The current study focuses on isolated, intact complexes that are capable of editing distinct sites. Peak editing activity for four sites was discovered in size-exclusion chromatography (SEC) fractions ≥670 kDa, while fractions estimated to be approximately 413 kDa exhibited the greatest ability to convert a substrate containing the editing site rps14 C80. RNA content peaked in the ≥670 kDa fraction. Treatment of active chloroplast extracts with RNase A abolished the relationship of editing activity with high-MW fractions, suggesting a structural RNA component in native complexes. By immunoblotting, RIP9, OTP86, OZ1 and ORRM1 were shown to be present in active gel filtration fractions, though OZ1 and ORRM1 were mainly found in low-MW inactive fractions. Active editing factor complexes were affinity-purified using anti-RIP9 antibodies, and orthologs to putative Arabidopsis thaliana RNA editing factor PPR proteins, RIP2, RIP9, RIP1, OZ1, ORRM1 and ISE2 were identified via mass spectrometry. Western blots from co-IP studies revealed the mutual association of OTP86 and OZ1 with native RIP9 complexes. Thus, RIP9 complexes were discovered to be highly associated with C-to-U RNA editing activity and other editing factors indicative of their critical role in vascular plant editosomes.
SUMMARY The past 17 years have been marked by a revolution in our understanding of cellular multisubunit DNA-dependent RNA polymerases (MSDDRPs) at the structural level. A parallel development over the past 15 years has been the emerging story of the giant viruses, which encode MSDDRPs. Here we link the two in an attempt to understand the specialization of multisubunit RNA polymerases in the domain of life encompassing the large nucleocytoplasmic DNA viruses (NCLDV), a superclade that includes the giant viruses and the biochemically well-characterized poxvirus vaccinia virus. The first half of this review surveys the recently determined structural biology of cellular RNA polymerases for a microbiology readership. The second half discusses a reannotation of MSDDRP subunits from NCLDV families and the apparent specialization of these enzymes by virus family and by subunit with regard to subunit or domain loss, subunit dissociability, endogenous control of polymerase arrest, and the elimination/customization of regulatory interactions that would confer higher-order cellular control. Some themes are apparent in linking subunit function to structure in the viral world: as with cellular RNA polymerases I and III and unlike cellular RNA polymerase II, the viral enzymes seem to opt for speed and processivity and seem to have eliminated domains associated with higher-order regulation. The adoption/loss of viral RNA polymerase proofreading functions may have played a part in matching intrinsic mutability to genome size.
We have investigated the molecular-level structure of the Vaccinia virion in situ by protein-protein chemical crosslinking, identifying 4609 unique-mass crosslink ions at an effective FDR of 0.33%, covering 2534 unique pairs of crosslinked protein positions, 625 of which were inter-protein. The data were statistically non-random and rational in the context of known structures, and showed biological rationality. Crosslink density strongly tracked the individual proteolytic maturation products of p4a and p4b, the two major virion structural proteins, and supported the prediction of transmembrane domains within membrane proteins. A clear sub-network of four virion structural proteins provided structural insights into the virion core wall, and proteins VP8 and A12 formed a strongly-detected crosslinked pair with an apparent structural role. A strongly-detected sub-network of membrane proteins A17, H3, A27 and A26 represented an apparent interface of the early-forming virion envelope with structures added later during virion morphogenesis. Protein H3 seemed to be the central hub not only for this sub-network but also for an ‘attachment protein’ sub-network comprising membrane proteins H3, ATI, CAHH(D8), A26, A27 and G9. Crosslinking data lent support to a number of known interactions and interactions within known complexes. Evidence is provided for the membrane targeting of genome telomeres. In covering several orders of magnitude in protein abundance, this study may have come close to the bottom of the protein-protein crosslinkome of an intact organism, namely a complex animal virus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.