The aim of this paper is to apply robust mechanisms-based material laws to the analysis of typical high-temperature power plant components during an idealized start-up, hold time and shut-down sequence under a moderate temperature gradient. Among others a robust constitutive model is discussed, which is able to reflect inelastic deformation, hardening/recovery, softening and damage processes at high temperature. The model is applied for a creep analysis of advanced 9–12%CrMoV heat resistant steels and calibrated in particular case against experimental data for 10%CrMoV steel type. For a steam temperature profile transient heat transfer analysis of an idealized steam turbine component is performed providing the temperature field. From the subsequent structural analysis with the inelastic constitutive model local stress and strain state variations are obtained. As an outcome a multi-axial thermo-mechanical fatigue (TMF) loading loop for one or several loading cycles can be generated. They serve as input for a fatigue life assessment based on the generalized damage accumulation rule, whose results come close to reality. In addition, the accuracy of a simplified method which allows a rapid estimation of notch stresses and strains using a notch assessment rule (NAR) [1] based on Neuber approach is examined.
The constitutive equation for the creep deformation rate, as well as the kinetic equations for hardening, recovery and damage processes, with a continuous functional dependence on temperature, are proposed. The material model is able to describe the primary, secondary and tertiary stages of creep behavior. The technique for the identification of parameters in the uniform model is developed on the basis of experimental creep curves for a wide range of temperatures and stresses. The parameter fitting for a creep-damage model with temperature dependence is carried out for one typical heat-resistant steel widely used in the power plant industry. Numerical results are obtained by the Finite-Element-Method for a real power plant component using the ABAQUS code and incorporated user-defined materials routines.
In power plants, high temperatures prevail during long holding times. Furthermore, power plants are often started and shutdown in order to account for gaps or oversupplies in energy production. These loading conditions induce both creep and fatigue loads. Due to their excellent thermo-mechanical properties, such as high tensile strength and elevated corrosion resistance, heat-resistant steels are established materials for power plant components. Nevertheless, these steels tend to soften under deformation, which should be accounted for by a constitutive model.The contribution at hand analyses the thermo-mechanical behavior of a steam turbine rotor. For this purpose, a unified phase mixture model is introduced. This constitutive model accounts for rate-dependent inelasticity, hardening, as well as softening by employing an iso-strain approach with a soft and a hard constituent. While the soft constituent represents areas with a low dislocation density, such as the interior of subgrains, the hard constituent refers to regions with a high dislocation density, i.e. the subgrain boundaries. Furthermore, two internal variables are introduced: a backstress tensor of Armstrong-Frederick type and a scalar softening variable. The model results in a coupled system of three evolution equations with respect to the inelastic strain, the backstress, and the softening variable.To allow for the analysis of real power plant components, the model is implemented into the finite element method such that the evolution equations are integrated based on the backward EULER method. The applicability of the model is demonstrated by conducting a thermo-mechanical analysis of a steam turbine rotor with complex geometry under realistic boundary conditions. In a first step, the instationary temperature field in the rotor is computed in a heat transfer analysis. Thereby, typical steam temperatures in power plants and the corresponding heat transfer coefficients are prescribed. As a next step, the structural analysis is conducted based on the phase mixture model and the obtained temperature field as input. In addition, the time-dependent rotational frequency and steam pressure are taken into account. Note that the influence of different start-up procedures such as a cold or a hot start is examined in detail. As a result, the structural analysis provides the stress-strain hystereses, which constitute the basis for further fatigue and damage assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.