The pH-triggered membrane insertion pathway of the T-domain of diphtheria toxin was studied using site-selective fluorescence labeling with subsequent application of several spectroscopic techniques (e.g., fluorescence correlation spectroscopy, FRET, lifetime quenching and kinetic fluorescence). FCS measurements indicate that pH-dependent formation of the membrane-competent form depends only slightly on the amount of anionic lipids in the membrane. The subsequent transbilayer insertion, however, is strongly favored by anionic lipids. Kinetic FRET measurements between donor-labeled T-domain and acceptor-labeled lipid vesicles demonstrate rapid membrane association at all pH values for which binding occurs. In contrast, the transmembrane insertion kinetics is significantly slower, and is also both pH-and lipid-dependent. Analysis of kinetic behavior of binding and insertion indicates the presence of several interfacial intermediates on the insertion pathway of the T-domain, from soluble W-state to transmembrane T-state. Intermediate interfacial I-state can be trapped in membranes with low content of anionic lipids (10%). In membranes of greater anionic lipid content, another pH-dependent transition results in the formation of the insertion-competent state and subsequent transmembrane insertion. Comparison of the results of various kinetic and equilibrium experiments suggests that the pH-dependences determining membrane association and transbilayer insertion transitions are different, but staggered. Anionic lipids not only assist in formation of the insertion competent form, but also lower the kinetic barrier for the final insertion. The function of diphtheria toxin T-domain is to translocate the catalytic domain across the lipid bilayer in response to acidification of the endosome, a task this 178-residue protein is able to perform without the help of any other proteins (1). Although the exact mechanism of membrane translocation is not understood, protein refolding in the lipid bilayer environment has to be the central issue. Thus, deciphering the mechanism of pH-triggered DTT insertion is expected to impact not only the field of cellular entry of toxins, many of which also enter the cell via the *To whom correspondence should be addressed: Phone: 913-588-0489 FAX: 913-588-7440 aladokhin@kumc.edu. † This research was supported by NIH GM-069783 and GM-069783-S1. ‡ Permanent address for Drs. Kyrychenko and Posokhov is Institute for Chemistry at V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61077, Ukraine NIH Public Access Author ManuscriptBiochemistry. Author manuscript; available in PMC 2010 August 18. NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author Manuscript endosomal pathway (2-4), but would also advance our understanding of general physicochemical principles underlying membrane protein assembly and stability.The crystallographic structure of DTT in the water-soluble form (5) (Fig. 1) provides a starting point for refolding/insertion studies. The protein consists of 9 ...
pH-Induced conformational switching is essential for functioning of diphtheria toxin, which undergoes a membrane insertion/translocation transition triggered by endosomal acidification as a key step of cellular entry. In order to establish the sequence of molecular rearrangements and side chain protonation accompanying the formation of the membrane-competent state of the toxin’s translocation (T) domain, we have developed and applied an integrated approach that combines multiple techniques of computational chemistry (e.g., long, µsec-range, all-atom molecular dynamics simulations; continuum electrostatics calculations; and thermodynamic integration) with several experimental techniques of fluorescence spectroscopy. Thermodynamic integration calculations indicate that protonation of H257 causes the greatest destabilization of the native structure (6.9 kcal/mole), which is consistent with our early mutagenesis results. Extensive equilibrium MD simulations with a combined length of over eight µsec demonstrate that histidine protonation, while not accompanied by the loss of structural compactness of the T-domain, nevertheless results in substantial molecular rearrangements characterized by the partial loss of secondary structure due to unfolding of helices TH1 and TH2, and the loss of close contact between the C- and N-terminal segments. The structural changes accompanying the formation of the membrane-competent state ensure an easier exposure of the internal hydrophobic hairpin formed by helices TH8 and TH9, in preparation for its subsequent transmembrane insertion.
Hemifluorinated compounds, such as HF-TAC, make up a novel class of nondetergent surfactants designed to keep membrane proteins soluble under nondissociating conditions [Breyton, C., et al. (2004) FEBS Lett. 564, 312]. Because fluorinated and hydrogenated chains do not mix well, supramicellar concentrations of these surfactants can coexist with intact lipid vesicles. To test the ability of HF-TAC to assist proper membrane insertion of proteins, we examined its effect on the pH-triggered insertion of the diphtheria toxin T-domain. The function of the T-domain is to translocate the catalytic domain across the lipid bilayer in response to acidification of the endosome. This translocation is accompanied by the formation of a pore, which we used as a measure of activity in a vesicle leakage assay. We have also used Förster resonance energy transfer to follow the effect of HF-TAC on aggregation of aqueous and membrane-bound T-domain. Our data indicate that the pore-forming activity of the T-domain is affected by the dynamic interplay of two principal processes: productive pH-triggered membrane insertion and nonproductive aggregation of the aqueous T-domain at low pH. The presence of HF-TAC in the buffer is demonstrated to suppress aggregation in solution and ensure correct insertion and folding of the T-domain into the lipid vesicles, without solubilizing the latter. Thus, hemifluorinated surfactants stabilize the low-pH conformation of the T-domain as a water-soluble monomer while acting as low-molecular weight chaperones for its insertion into preformed lipid bilayers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.